THE VITAMINS
AND THEIR
CLINICAL APPLICATIONS
THE VITAMINS
and their
CLINICAL APPLICATIONS

A Brief Manual

by

PROF. DR. W. STEPP
Director of the I. medical clinic,
University of Munich

DOZ. DR. KÜHN AU
Director of the municipal institute for
balneology and metabolism,
Wiesbaden

DR. H. SCHROEDER
Associate at the I. medical clinic,
University of Munich

Translated by
HERMAN A. H. BOUMAN, M. D.
Minneapolis, Minnesota

THE VITAMIN PRODUCTS CO.
Milwaukee, Wisconsin
FOREWORD

In recent years perhaps no other branch of medical research has survived such tempestuous development as has vitaminology. To-day we recognize in these substances not only vital components of nutrition indispensable for the living processes in the human and animal organism to every living cell, and for the cooperation of organs and organic systems, but beyond that, they are substances bound up with the events of the living world in general. If it is permitted to put along side of the saying of Pflueger "Without albumen no life" another "Without vitamin no life", it may be appreciated, what it means, that during late years progress has been successfully made in clearing up the chemical composition of the vitamins. The advantage of being enabled to work with pure substances now is very evident. The possibility of their pharmacological and toxicological investigation is at hand. The question of dosage can be answered directly. Furthermore we are in a position to examine the vitamins as to their curative effects reaching beyond their properties as merely accessory materials.

The questions just indicated hold the center of investigation at present. There is no doubting their importance for the practitioner desiring to use vitamins for curative purposes. Sensing the want of the busy man, in general or hospital practice, of a chance to inform himself in vitaminology by means of a lucid presentation with special regard to the purely practical, the idea arose to write a concise review of the new expanding field of science. Unwilling to lose sight of our problem, it is necessary to strictly limit ourselves as well in regard to actual experimental material as to observations and experiences with patients. Only the most important could be submitted, and of the investigators of merit only some few could be cited. If we have reported our own rather large experience with the metabolism of A and D, purposely in greater detail, it has been done, because we have been engaged in these questions with special intensity. We are firmly convinced that vitamin therapy is still in its incipiency. May this little booklet be of aid in the evolution of it. Uncritical optimism has to be avoided the same as fruitless resignation.

Munich—Wiesbaden, early 1936.

STEPP, KÜHNAU, SCHROEDER
TRANSLATOR'S PREFACE

When pioneers and settlers enter into and then extend scientific fields, they soon reach areas posted with question marks. It is in these regions where new sciences form, as, for instance, "Vitaminology" since 1929.

In this respect there are enormous reaches of land under experimentation and not the least portion under American cultivation. The news of the discoveries in pernicious anemia flashed like chain lightning across the medical firmament.

The man in practice finds the literature bewildering, the plethora of facts and reports are difficult to assemble and clinically to apply. It is with alacrity therefore, that we hail the little book, "Clinical Application of Vitamins." Seasoned veterans guide us through blocks of experimentation; we seem to grasp it all, and do not tire. With masters of medicine we are clearly viewing clinical situations formerly enshrouded in fog.

That a medical man should become desirous of making an effort to enlarge the circle of readers is only natural. In doing so, the translator must acknowledge his indebtedness to Dr. Royal Lee for his generosity in arranging publication of this translation, and especially to Alfred William Hubbard for bringing the book to my attention, and for the inspiration, assistance and kind courtesies he has given me throughout the work. Also to Mrs. R. A. Glaser, thanks for her untiring work at the manuscript preparation and indexing.

HERMAN A. H. BOUMAN, M. D.
SURVEY OF THE VITAMINS KNOWN TO-DAY

In the following table all vitamins where existence has been established at present are set up. In the text only those are discussed which are of proven importance to man.

<table>
<thead>
<tr>
<th>Letter designation of the vitamin</th>
<th>Functional designation of the vitamin</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Fat-soluble vitamins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin A</td>
<td>Antixerophthalmic vitamin</td>
<td></td>
</tr>
<tr>
<td>Vitamin D</td>
<td>Antirachitic vitamin</td>
<td></td>
</tr>
<tr>
<td>Vitamin E</td>
<td>Antisterility vitamin</td>
<td></td>
</tr>
<tr>
<td>Vitamin K</td>
<td>Antihemorrhagic vitamin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Dam, Schönheyder)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fat-soluble growth vitamin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Coward-Key-Morgan)</td>
<td></td>
</tr>
<tr>
<td>II. Water-soluble vitamins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin B₁ (B in America)</td>
<td>Antineuritic vitamin</td>
<td></td>
</tr>
<tr>
<td>Vitamin B₂</td>
<td>Thermostable growth vitamin</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>(lactoflavin)</td>
<td></td>
</tr>
<tr>
<td>Vitamin B₃</td>
<td>Thermolabile growth factor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Williams-Waterman; O'Brien)</td>
<td></td>
</tr>
<tr>
<td>Vitamin B₄</td>
<td>Thermolabile growth factor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Reades; Keenan)</td>
<td></td>
</tr>
<tr>
<td>Vitamin B₅</td>
<td>Thermostable growth factor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Carter-Kinnersley-Peters)</td>
<td></td>
</tr>
<tr>
<td>Vitamin B₆</td>
<td>Pellagra preventive (Györgyi)</td>
<td></td>
</tr>
<tr>
<td>Vitamin B₇</td>
<td>Enteral vitamin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Centanni-Montevecchi)</td>
<td></td>
</tr>
<tr>
<td>Vitamin C</td>
<td>Antiscorbutic vitamin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(ascorbic acid)</td>
<td></td>
</tr>
<tr>
<td>Vitamin H</td>
<td>Skin-antiseborrheic vitamin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Györgyi)</td>
<td></td>
</tr>
<tr>
<td>Vitamin J</td>
<td>Antipneumonic vitamin (v. Euler)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antianemic vitamin; extrinsic factor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Castle)</td>
<td></td>
</tr>
</tbody>
</table>

* Significance for man unknown.

**The growth factor B₂ (lactoflavin) the pellagra factor B₆ and the anemia factor of Castle form a functional unity and are comprehended as vitamin B₂-complex. Under this designation the three substances are discussed in the text together. In America the vitamin B₂-complex is generally called vitamin G.

As vitamin F Evans (1928) and Oncken (1936) signify a mixture of vital, not synthesizable in the body, highly unsaturated fatty acids, the lack of which produce in rats necroses of the skin, sterility and uremia.
HISTORICAL INTRODUCTION

Max von Rubner developed the energetics of metabolism, allowing the presentation of the nutritional processes with a lucidity never approached before, so that the physiology of nutrition, evolved by C. von Voigt and his school, seemed to be put upon a firm basis for all time. Some few experimental facts of the last decades of the past century, which could not be made to harmonize with the teachings of Voigt and Rubner, signal among them the investigations of Lunin of Bunge's laboratory in Bale, had either remained little noticed or had been forgotten. They began to be reminded of them again when physicians in the tropics, on the basis of newer studies, conceived the beriberi disease as a disturbance of nutrition, resulting from food consisting preponderately of polished rice. This viewpoint was decidedly confirmed by the discovery of experimental polyneuritis by Eijkman in 1897 and in sequence by the studies of G. Grijns, Axel Holst and numerous other investigators. All of them contributed to prepare the ground for the growing changes of our ideas about nutrition ensuing in the following decades. To be sure the firm conviction that there were, beside the main foodstuffs, still other unknown substances indispensable to growth, maintenance and reproduction of the human and animal world prevailed quite generally only, when, in comprehensive new and systematic alimentary tests in which stipulations were formulated with increasing precision, the total results despite entirely different methods pointed in the same direction. Diets were used which were in part freed from lipoids by extraction with alcohol and ether and in part artificially composed of the purest nutriments. All test animals (mice, rats, pigeons, etc.), showed consistently the same behavior: Cessation of growth, stationary weight or loss of it, collapse and death. Supplementing the food with the substances removed from it, that is, certain extracts, even in very small quantities, proved their power to correct the nutritional deficiency; animals already ill recovered rapidly, while the healthy upon timely administration of extracts could be maintained in health. Of the work which adduced convincing experimental proof, may be named that of Stepp, Schaumann, Hopkins, Casimir Funk, Osborne and Mendel and others. The work of recent years, in particular the clearing up of the chemical composition of several vitamins, has vastly extended the new field. The close connection of vitamins and hormones has even at this time adduced decidedly new aspects in the study of the pathogenesis of many disease conditions. No less benefit of this research has the physician received in his practice, and will surely continue to do so. The vitamins are not only of great consequence as accessory substances, but curative
effects have been recognized in them, which they may render independent of the tasks assigned to them in the food-stuffs.
TERMINOLOGY OF THE VITAMINS
AVITAMINOSES AND HYPOVITAMINOSES

The vitamins are components of the plant body sharing in very small quantities in the regulation of the processes of the plant. They are, therefore, also considered as hormones of the plant world. After they have been taken up by the animal body in the food, they incur important tasks, partly in regard to vital phenomena in the cell itself (affecting permeability, catalyzing fermentative action), and partly to regulating remote processes. From the standpoint of quantity they can hardly be considered as energy producers. In general, since it is not able to synthesize them, the animal body is obliged to ingest the vitamins with the nourishment—directly in vegetable food and indirectly in animal nutriment—either in ready form or as provitamins (out of which the specific substance is produced in part by radiant energy or in part by catalytic cooperation of other diet factors). If too little of these vital substances is taken up (for reasons of lack in the food, of deranged resorption in pathological conditions or of their destruction by bacteria in the gastrointestinal tract) when the reserves of the body's own are depleted, the functions pertaining to them are disturbed, and manifestations of more or less sharply defined syndromes of deficiency designated as avitaminoses or hypovitaminoses develop.
RELATIONS BETWEEN VITAMINS AND HORMONES

The vitamins must be ascribed to the primitive substances of all organic life, since they are found in the lowest forms of life (bacteria, algae, etc.). They play a decisive role in the animal, even in the organisms possessing neither hormonal glands nor hormones. In higher animals where internal secretion appears first as a physiological arrangement, there are at once close reciprocations established with the vitamins. As they grow, the vitamins affect, generally, development of the hormonal glands and their function, and enter into reciprocations with the hormones by turns in a sense of a co- and counter play. Because of the close connection indicated between both of these groups of substances, it is often practically impossible to carry out a strict separation of their effects. A lack of as well as “too much” of vitamins may become manifest as hormone activity.
THE VITAMINS AS FOOD-STUFFS AND AS CURATIVE SUBSTANCES

The animal world, subsisting upon plant food essentially, takes up plant tissues or parts of them (the carnivores of animal nutriment in a round-about way) usually containing albumen and besides in varying quantity then more carbohydrates and then more fats, but always minerals and also vitamins. Therefore, a multiplicity of substances received with the food-stuffs (i.e. catabolic products) comes to bear upon metabolism almost exclusively. How much the principal foods—proteins, carbohydrates and fats—in regard to their absolute and relative quantity and their reciprocal quantitative relations influence the specific functions of each vitamin and thereby of each hormone in detail is beyond our knowledge. (The direct effect upon hormonal glands and hormones themselves must not be left out of consideration.) It is only certain that such reciprocations do exist. Of great practical importance is the discovery made in recent years that the actions of the individual vitamins are closely linked together and this in the sense of a co- and counter play. The lack of a vitamin in a particular diet is followed of necessity by a change of effect of other vitamins. The deficiency symptoms resulting from removal of a vitamin from the nourishment do not in a strict sense give positive information of the function of the particular vitamin in the organism. If, nevertheless, the symptoms of deficiency (phenomena of loss or lack) are described as characteristic of the individual clinical syndromes designated as avitaminoses, it has been done, because, under certain conditions upon removal of one or another vitamin they come to be observed ever in a like manner. It is necessary however to keep constantly in mind that the direct functional loss of the respective vitamin participates equally in the development of the morbid disturbances as well as resulting in the changed effect of the vitamins remaining in the nutriment under these conditions, and in that of the function of the hormones regulated by them. The conception that the investigation of the pure vitamin might possibly disclose new and so far unknown effects has proven especially productive with Vitamin C. It appears that this vitamin given in pure form may influence disease conditions, which (so much may be said today) have nothing to do with states of avitaminoses or hypovitaminoses. Thus the vitamins, beyond the service they render as accessory substances, possess the properties of curative-stuffs.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter I</th>
<th>VITAMIN A</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>1-17</td>
<td>1-17</td>
</tr>
<tr>
<td>Chemistry</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Determination</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Occurrence</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Manifestations of Deficiency of Vitamin A</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Absorption and Cell Effect of Vitamin A</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Requirement of Man</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Mechanism of Action of the Pure, Isolated Vitamin A, and Its Relation to Metabolism</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Hypervitaminosis A</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Vitamin A in Synergism and Antagonism of Vitamins</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Clinical Observations Relating to Physiology, Pathology and Therapy of Vitamin A in Man</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Vitamin A Preparations and Their Dosage</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Clinical Application of Vitamin A and Its Dosage</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

Chapter II | THE VITAMIN B GROUP | 19-35 |
| Introduction | 19 | 19 |

VITAMIN B1 (Antineuritic Vitamin) | 19-39 |
Introduction. The Growth-Factor (Vitamin B1 in a narrower sense—Lactoflavin)	19-39
History and Definition	19-39
Chemistry	19-39
Determination	19-39
Occurrence	19-39
Requirement of Man	19-39
Vitamin B1 Behavior in the Organism	19-39
Physiology	19-39
Symptoms of Vitamin B1 Deficiency	19-39
B1 Relations to Other Vitamins	19-39
Hypovitaminosis B1 as a Problem of Nutrition	19-39
Indications for Vitamin B1 Administration	19-39
1. Primary Non-tropical Avitaminosis B1 in Man	19-39
2. Secondary and Symptomatic Avitaminosis B1	19-39
(a) Neurology	19-39
(b) Internal Medicine	19-39
(c) Pediatrics	19-39
(d) Gynecology	19-39
(e) In Other Fields of Medicine	19-39
Addendum	19-39

THE VITAMIN B2 COMPLEX | 39-47 |
History and Definition	39-47
Introduction. The Growth-Factor (Vitamin B2 in a narrower sense—Lactoflavin)	39-47
Chemistry	39-47
Determination	39-47
Occurrence	39-47
Requirement of Man	39-47
Behavior of Vitamin B2 in the Organism	39-47
Mode of Action and Physiological Importance	39-47
Phenomena of Deficiency	39-47
CHAPTER ONE

VITAMIN A

History. In 1909 W. Stepp reported that white mice fed on a diet deprived of its alcohol- and ether-soluble substances, but otherwise sufficient, could not be kept alive. He drew the conclusion, therefore, that the principal aliments (proteins, carbohydrates, fats and minerals) did not suffice to sustain life, and that aside from them there were still other materials, unknown as yet, assigned to lipoids because of their solubility in ether and alcohol, which were equally indispensable. The conjecture that the neutral fats, so easily formed from carbohydrates, were not the decisive factors could soon be confirmed, when, during continued feeding experiments, additions of the purest neutral fats failed to save the animals. These and further experimental feedings under different schemes of investigation in rats by F. G. Hopkins confirmed the work of Stepp completely. This was the starting point for the extensive experiments carried on chiefly in English-speaking countries, mostly in rats, during the World War, which established the fact that deficiency of a fat-soluble substance would lead to a disease of the eyes, later recognized as xerophthalmia or keratomalacia. We mention the names of Osborne and Mendel, McCollum and his school, Davis, Sherman, Drummond, Mellanby and the German investigators Freise, Goldschmidt and Frank. In the light of this knowledge one could understand the reports of Japanese eye clinicians of 1896 about the occurrence of a grave epidemic of xerophthalmia and keratomalacia in Japanese children. The disease had appeared chiefly in children of Mid-Japan where the food was principally of vegetable origin. Among the population of the coast, where fish was plentiful, the disease was scarcely ever seen. Ten years later Mori described a similar eye affection in 1400 children from the ages of 2 to 5 years. This malady, known in Japan as hikan was eminently improved by chicken livers, eel fat and cod liver oil. At that time, when the vitamin researchers had already taken notice of the existence of an antixerophthalmic vitamin, Bloch in Denmark reported numerous observations of keratomalacia in children, fed with skimmed milk and margarine instead of whole milk and butter. Continued search then led to the important recognition that a so-called fat-soluble vitamin, aside from the antixerophthalmic, an antirachitic factor, must be distinguished. By the laborious and admirable efforts of English and German investigators (Windaus, Pohl, Linsert, Rosenheim, Webster, et al) the latter was isolated and its chemical constitution determined. Not less successful were the efforts aiming at the clarification of the antixerophthalmic Vitamin A. The
work of Steenbock, H. von Euler, and Karrer deserves emphasis since they could prove the activation of Vitamin A by pure carotin. Relying upon the work of R. Kuhn and Winterstein relating to polyemia P. Karrer and H. von Euler were jointly enabled to isolate the Vitamin A and to establish its chemical structure.

Chemistry. The Vitamin A is an alcohol of the following formula:

Its accuracy was verified by comparing the compound gained by hydration with the product* obtained by synthesis. Complete identity of both bodies became evident. The Vitamin A stands in closest relationship with the carotin dye-stuffs. They are the red, orange-red and yellow dyes, hydrocarbons with 40 carbon atoms, in which single and double joined hydrocarbon atoms follow each other with regularity. Among them the β-carotin has a separate position in so far as theoretically one molecule may give rise to two molecules of Vitamin A, as may be seen in the following formula. The splitting up occurs in the middle, taking up two molecules of water.

Because of the conversion of carotin into Vitamin A in the animal body it has also been designated as Provitamin A. The conversion occurs in the liver, aided by a ferment, the so-called carotinase and for its efficacy

* Of the perhydrovitamin; both were carried over the ketone into the semicarbon.
thyroxin of the thyroid is indispensable. Carotin, delta and gamma, both comprising only one hydrate ring, the so-called "ionon ring", furnish correspondingly less Vitamin A. The activity of Vitamin A is connected as well with the β-ionon ring as with the presence of the double compounds. And so it is only a restricted number of carotin dyestuffs which activate provitamin effect.

As carotinoids* carotins are definitely related to dye-stuffs with 40 or less carbon atoms. Closely connected are the oxygen-containing xanthophylls, which like carotin dye-stuffs have 40 carbon atoms. They occur in the green parts of vegetables always associated with carotin. The carotin dye-stuffs as well as the carotinoids are built up by bacteria.

Most of the xanthophylls are Vitamin A inactive like many others not containing the intact ionon ring carotinoids. The practically important dye-stuff of the tomato, the carotinoid lycopin,** displays, for example, just as little Vitamin A effect as does the dye-stuff of the egg yolk, the lutein, belonging to the xanthophylls.

The only xanthophyll so far known to be Vitamin A active is the kryptoxanthin (caricaxanthin). Upon the occurrence of kryptoxanthin in yellow corn and egg yolk especially depends the Vitamin A activity of these food-stuffs.

The precursors of Vitamin A in Nature are the following: α- β- γ- and (probably) δ-carotin, kryptoxanthin and retinin (in the retina).

** Determination. ** Detection of Vitamin A is possible by biological as well as by chemical and spectrophotometric methods. A separation by biological means of carotin and Vitamin A is not feasible, since the carotins within the organism, as mentioned, are converted into Vitamin A. The so-called xerophthalmia test much used formerly has given way to the growth test. This can be carried out by the prophylactic, or better, by the curative method. Rats serve as experimental animals. They are fed a Vitamin A-free diet until cessation of growth sets in (depleted reserves). About 7 days later additions of the substance to be investigated are started. Resumption of growth with an average increase of 3 gm. per week in 60% of the animals proves the presence of Vitamin A. An observation lasting three weeks suffices.

Merck & Company proceed with the biological investigation as follows: That dose of the substance to be tested, given daily, which in 80% of the test rats kept on a vitamin-free diet, produces after 35 days an increase in weight of at least 15 gm., preventing xerophthalmia at the same time, is considered a biological unit.

Of β-carotin the rats need per diem about 2.5 γ, of α- and γ-carotin 5. (1 γ equals 0.000001 gm.). It has been found recently that a lack of Vitamin A in the feed of rats develops a sort of continued estrus, which indeed may be safely distinguished from the true estrus histologically. This condition, removable in three days even by Vitamin A, is designated as Kopokeratosis (Kopokeratosis=rest). Less closely corroborated as yet has been the re-

* Of general biological interest is the fact that by the oxidation splitting of the carotin dye-stuffs partly new dye-stuffs and partly taste and scent substances arise in the plants.

** Adverse newer reports need confirmation.
sistance test; in rats fed a Vitamin A-free diet for four weeks, an otherwise harmless saprophyte, the bacteria mucos. capsul. proves pathogenic.

Chemically the presence of carotinoids as well as Vitamin A may be detected by the reaction of Carr-Price with trichloride of antimony. For quantitative determination of the carotin and Vitamin A, sera and organs are extracted with alcohol and benzol. The extract (organs are previously saponified) is concentrated and from that the carotin is determined. The index of carotin ensues by comparing the yellow color in the extracted fluid due to carotin with the graduated yellow glasses in the Lovibond tintometer; the content is expressed in yellow units. The Vitamin A is ascertained by adding trichloride of antimony. The resulting blue color is compared with the blue of the graduated blue glasses in the Lovibond tintometer and is expressed in blue units. Since trichloride of antimony and carotin show also a blue tinge (Vitamin A reacting, to be sure, about 20 times stronger), it is necessary to subtract the value of the blue, due to carotin, from that found at the determination of Vitamin A. The former is obtained by converting the yellow units found for carotin by means of a gauged curve in the blue units.

In performing the reaction it is to be remembered that certain, also Vitamin-A active carotinoids, yield positive results. On the other hand there are certain substances known as checking bodies which may hinder the success of the reaction.

Recently the spectrophotometric method has proved of great value for the determination of Vitamin A. It has a typical band of absorption at 328 \(\mu \mu \). Very recently the method used hitherto has been replaced by employing shorter periods of exposure, since the mercury light destroys a part of the vitamin even on short exposure.

Furthermore, the blue solutions obtained by the Carr-Price reaction are examined spectrophotometrically. There appear two typical absorption bands, one at 606 \(\mu \mu \) and one at 572 \(\mu \mu \). They are based, as has been demonstrated recently, upon two chromogens, and the other the hepanxanthin equals 580 \(\mu \mu \)-chromogen. The structure of the latter has not yet been fixed. A vitamin unit has been proposed by the Section on Hygiene of the League of Nations as the vitamin activity of 0.6 \(\gamma \) (\(\gamma \) equals 0.001 mg.) of the \(\beta \)-carotin.

Occurrence. The source of Vitamin A is the vegetable kingdom. Very soon it was recognized that it was widely distributed there and at that usually together with the chlorophyll. These correlations are clarified today insofar as the statement may be made that the formation of chlorophyll and that of the carotinoids runs parallel; a direct dependence of origin of one upon the other could not be proven. The extent of the Vitamin A activity in vegetable products is due to the carotin content they possess; indeed it is questionable if the complete Vitamin A occurs in plants at all. The respective decision is not obtainable by biological, but only by chemical or spectrophotometric means. Since comprehensive investigations with these methods have not been submitted, the
question cannot be definitely answered. The high Vitamin A efficacy of many plant products is frequently marked at once by their yellow color, thus, for example, white corn is almost Vitamin A inactive, while the yellow is strongly active. Of great interest is the fact that the carotin content of plants is dependent upon the kind of soil in which they grow. A soil rich in copper, manganese, zinc, nickel and chromium guarantees high carotin content. The green parts of plants are rich in carotin; when they turn yellow in the Fall their content of it is reduced to \(\frac{1}{20} \) of the original quantity. Subterranean plants contain but little carotin. Mushrooms contain little or no Vitamin A. Algae such as Nitschia closterium, for example, have an abundance.

Fruit is, generally speaking, a poor source of Vitamin A; berries may be excepted; but dried pumpkin contains generous quantities.

The animal body, as stated, converts carotin easily into Vitamin A, providing they contain the \(\beta \)-ionon ring and the double combinations in proper form (c.f. chemistry above), but for itself it is not able to produce it. Not all animals have the power to convert carotin into Vitamin A. Thus, for example, the cat and many kinds of fish are continuously supplied in their food with the complete vitamin.

The formed or the complete Vitamin A taken with the nutriment is stored throughout the body, especially in the liver. In women the storing is greater than in men. The liver of the human fetus holds little Vitamin A; it is also percentually less than in the adult and it is still more diminished towards the end of pregnancy. In the fetal liver carotin is deficient. During pregnancy the liver is particularly rich in Vitamin A; it contains 95% of the entire stored amount; the rest is chiefly distributed in lung and kidney. Besides Vitamin A carotin is found in milk. Yellow butter (very rich in carotin) is a particularly good source of the vitamin. The richest source of Vitamin A is liver oil. Holding first place are the liver oils of the fish Soombresox saurus, Rhombus maximus, Stereolepsis ischiagni and then that of the liver of the sea bird Larus marinus. According to very recent investigations halibut oil excels all others. The content of carotin and Vitamin A expressed in milligrams of carotin in 100 grams of various foods is given in the following table.

<table>
<thead>
<tr>
<th>Food</th>
<th>Carotin Content (mg/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cod Liver Oil</td>
<td>4 - 200</td>
</tr>
<tr>
<td>Butter</td>
<td>2 - 20</td>
</tr>
<tr>
<td>Egg Yolk</td>
<td>4 - 20</td>
</tr>
<tr>
<td>Milk</td>
<td>0.2 - 0.8</td>
</tr>
<tr>
<td>Cheese</td>
<td>1.6 - 3.2</td>
</tr>
<tr>
<td>Liver, Summer</td>
<td>7 - 12</td>
</tr>
<tr>
<td>Liver, Winter</td>
<td>0.8</td>
</tr>
<tr>
<td>Spinach</td>
<td>8 - 24</td>
</tr>
</tbody>
</table>

Manifestations of Deficiency of Vitamin A. The effects of Vitamin A, which seemed formerly to be definitely designated as “antixerophthalmic” and “fat-soluble growth vitamin”, have been very much broadened by
our present knowledge. Essentially they may be summarized in four
groups. Lack of Vitamin A factor causes:

1. Degenerative changes of the structures of the skin and the mucosa. The
epithelium, especially of the mucosae, begins to proliferate showing a
tendency to keratinize, a process particularly plain in the vagina. In
sequence there appears an increasing permeability of the superficial
epithelial strata, resulting in a lowering of the natural resistance to in-
fec tions of all sorts. Vitamin A has, therefore, been designated as the
antiinfectious vitamin. Alveolar pyorrhea, mastoiditis, otitis media,
sinusitis, bronchitis, puerperal sepsis, and urethritis are very frequently
observed in animal experiments with lack of Vitamin A. The glands
cease their secretory activity; in and around the salivary glands there
develops a stasis of secretion and a tendency to abscess formation; ana-
logous processes about the tear glands lead to decomposition and infection
of the conjunctival secretion, formation of exudates and desiccation of
the cornea—xerophthalmia and keratomalacia.

Also the over-present abnormal increase of enamel and cement for-
mation with disturbance of dental growth is nothing else but an expres-
sion of the changed epithelial structure. In like manner the formation
of stones in the biliary and urinary ducts and further the intestinal gout
of chickens, attributable to uric acid deposits in the gut, must be ex-
plained.

2. Insufficient supply of Vitamin A or its precursor produces disturbances
in the central nervous system, which also need further study in animal
experimentation. First, a sort of tract degeneration of the spinal cord
and then a condition approaching ergotism seems to develop. The nerv-
ous manifestations of lathyrism, pellagra and pernicious anemia used
to be linked with lack of Vitamin A. The cord symptoms especially of
the latter disease are said to respond favorably only to fresh liver prep-
arations, but not to liver substance alone. It is worthy of note that a
pellagra-like disease among dogs—"black tongue", not rare in America,
—is cured by carotin, but not by Vitamin A. That is information deserv-
ing of notice, because, though standing out for itself alone, it may admit
a biological activity of carotin.

3. The importance of Vitamin A for the regeneration of visual purple has
received in very recent time close attention only by students and has ad-
vanced appreciation of non-hereditary hemeralopia as being a specific
symptom of deficiency. The retina is the organ of the body richest in
Vitamin A. The visual purple is an albuminous compound of Vitamin
A. Failing supply of Vitamin A endangers the anabolism of the pigment
indispensable to vision. In addition attention may be called to the Bitot
spots of the cornea as prodromal, and the brown scaly pigmentation of
the conjunctival epithelium as signs of recovery from xerophthalmia or
keratomalacia.

4. The comparatively high content of Vitamin A in the sexual glands has
been known and appreciated for a long time. The question of closer re-
lationships between Vitamin A and the sexual sphere has been more
accurately investigated only since Vitamin E was discovered. It was astonishing to see that the symptoms of Vitamin A deficiency almost completely resembled those of avitaminosis E in regard to their effect upon the sexual organs. In male animals appear changes in the seminal tubules and destruction of the germ cells, in the females absorption sterility; and in addition—something not seen with lack of Vitamin E—an extinction of the sexual impulse and disturbance of fertilization and implantation of the ovum.

Absorption and Cell Effect of Vitamin A. For the absorption of Vitamin A the presence of neutral fats but not that of bile is an essential presumption.

The statement that the Vitamin A substance was found in the thoracic duct could be confirmed from personal observations at the First clinic of Munich in a patient with chyluria. Perorally administered fat-dissolved Vitamin A (carotin as well) soon became demonstrable in the urine. If larger quantities of carotin are taken in, they are in a preponderate measure converted into Vitamin A and stored as such. The conversion, however, never ensues to 100%, but always so that a small quantity of carotin itself is stored.

It is regrettable that the information as to how Vitamin A affects the cells is still incomplete, but recent investigations indicate the direction in which search must be made. In animals receiving a sufficient supply of the vital substance, as compared to others, a relatively high content of purines has been demonstrated in their tissues. If the presence of abundant purines enhances the formation of the nucleus, this finding would point to the fact that the regenerative ability of the cells were benefited by Vitamin A. Pursuant to investigations of respiratory processes in the liver (from sections of liver of normal animals and those Vitamin A deficient after the method of Warburg) the vitamin seems to facilitate the processes of oxidation within the cell itself. In a like sense observations speak for the catalytic activities of Vitamin A (and the carotinoids) in the auto-oxidation of unsaturated fatty acids. As important as these findings may be respecting obvious conclusions, a certain reserve is commendable, because many carotinoids without Vitamin A effect behave in quite a similar manner.

The Vitamin A effect is tied, however, to the presence of iron, and indeed for that purpose small quantities of hemin-iron, which is available in every cell, suffice.

Requirement of Man. The daily requirement of man may be appraised to be about 3-5 milligrams of carotin. The minimum is about 1 milligram and the optimum about 5 milligrams. The spread between minimum and optimum is apparently particularly large. That is of great significance for the important question of a latent relative lack of Vitamin A, i. e. the question of an hypovitaminosis A. In this connection it will certainly be possible to progress by comprehensive examinations of the blood as to its content of carotin and Vitamin A in a large number of healthy and sick individuals.
Mechanism of Action of the Pure, Isolated Vitamin A, and Its Relation to Metabolism. While the most essential manifestations of insufficiency arising from lack of Vitamin A had been thoroughly studied (at this time the isolation of the vitamin or its precursors, the carotins, had not met with success), the investigations of the working mechanism could only be started when the pure substances were at hand. The most important fact was the finding that Vitamin A proved a direct antagonist of thyroxin. The growth effect of Vitamin A is suspended, and its storage in the liver prevented by thyroxin. Conversely, the toxic action of thyroid substance is retarded by Vitamin A, as well as the tadpole metamorphosis is accelerated by thyroxin. The disease condition ensuing from over-supply of Vitamin A (hypervitaminosis A) is relieved or arrested by thyroxin. Moreover, the important observation was made that thyroidectomized goats are unable to convert carotin into Vitamin A. Lactating thyroidectomized goats eliminate not as usual, a white, but a yellow milk.

These briefly sketched relations between thyroid and Vitamin A, which are evident at present, are surely of great import therapeutically in practice, particularly in view of liver pathology. At this point some few remarkable results of the experimental research may be adduced. Following administration of thyroxin or thyreotropic anterior hypophysis hormone the consumption of Vitamin A rises and it causes a depletion of the Vitamin A depots in the liver. It appears, however, that the ability of the liver to retain Vitamin A is in nowise disturbed. On the contrary with a very abundant supply of the vitamin more is stored in a liver damaged by thyroid substance or thyreotropic hormone than under normal conditions. It is said that there is eight times more Vitamin A stored than carotin. If there exists a thyreogenic liver damage for an extended period of time, the conversion of carotin into Vitamin A is not complete.

The relations of Vitamin A to protein metabolism have been investigated many times. A clear perception, however, is as yet impossible.

The relative connections of Vitamin A and carbohydrate and fat metabolism are likewise not fully surveyed at present. It has been suggested that fixed proportions of carotin and Vitamin A were necessary to form methylglyoxal in sugar metabolism. Moreover certain experimental investigations have led to the idea that Vitamin A was needed for the formation of fat from carbohydrates, as well as for the synthesis of fat from fatty acids and glycerine. It is possible that Vitamin A plays a role, also, in the oxidation of unsaturated fatty acids. Since they are chiefly found in phospholipoid compounds, the relation of Vitamin A to phospholipoid metabolism must be thought of. Cholesterin metabolism seems likewise to be related to Vitamin A. Upon supplying considerable quantities of Vitamin A there appears temporarily an increase of cholesterin, the ether-soluble phosphorus and fatty acids in the blood, which after some time again disappear (Wendt, Klin. Wschr., 14, 9, 1935). A strict coupling of Vitamin A with cholesterin metabolism is not evident, as investigations of hypercholesteremia in man have demonstrated.

For the preservation of a certain state of equilibrium between Vitamin
A and carotin in the blood as well as in the liver the facts seem to indicate that Vitamin A may be converted into carotin.

About the elimination of Vitamin A or carotin in urine, bile, semen, feces, etc. nothing certain is known.

Hypervitaminosis A. An oversupply of Vitamin A encourages the development of a grave clinical syndrome, which is evidenced in rats and mice by emaciation, loss of hair, fatty degeneration of the liver, pulmonary and intestinal hemorrhages and thyroid hypertrophy. With overdoses of carotin it does not seem possible to produce such a hypervitaminosis. More recent experimental efforts clearly emphasize the important bearing Vitamin A has upon the fat and lipoid metabolism. Histological examinations revealed fatty changes of the von Küpper star cells in the liver, of the interstitial cells of the testicle, heavy lipoid accumulations in the horn cells of the skin, and recently also the appearance of exophthalmus and a tendency to spontaneous fractures, all of which have been described as manifestations of the hypervitaminosis. In man hypervitaminoses have not been observed so far. According to experiences gained from experiments on animals the doses employed for functional tests and therapeutic purposes are insufficient to cause damages in man in the sense of a hypervitaminosis.

Vitamin A in the Synergism and Antagonism of the Vitamins. As has been briefly set forth in a previous chapter, the withdrawal of a vitamin from the food means an alteration of effect of the other vitamins still remaining in the nutrient. Thus the phenomena resulting from a lack of Vitamin A correspond in a certain degree to those produced by an oversupply of Vitamin D, and conversely those resulting from an oversupply of Vitamin A correspond to a Vitamin D deficiency. There seems to be, then, for Vitamins A and D a condition of equilibrium which is indispensable for the maintenance of normal cell formation. However, there exists relations not only between the fat-soluble Vitamins A and D, but also between A and the components of the water-soluble B complex and Vitamin C. In respect to the former (A and D) the evidence is not yet clear, since the results of the examinations with pure Vitamin B₁ and B₂ extracts have not been submitted. Antagonism between Vitamin A and Vitamin C, however, may be discussed with some assurance. Thus it happened that at the First Clinic in Munich a hypervitaminosis A produced in guinea pigs by large doses of Vitamin A could be relieved by heavy doses of Vitamin C fed at the same time. The accumulation of Vitamin A in the liver due to abundant Vitamin A supply is diminished by concomitant additions in the food of Vitamin C (Wendt, Schroeder, Zschr. Vitamin f., 4, 206, 1935.).

Clinical Observations Relating to Physiology, Pathology and Therapy of Vitamin A in Man. Large series of investigations of the carotin and Vitamin A content of the blood in healthy individuals have resulted in considerable fluctuations in the medium average of value of 8.6 LEG* for carotin and of 1.4 of Vitamin A LEB** (calculated to 10 cc). The labilities

* Lovibund Einheit Galle—L. Units Yellow.
** Lovibund Einheit Blau—L. Units Blue.
of the carotin and Vitamin A contents in the serum are so marked that values even double the figures indicated are found in healthy men. Fluctuations of carotin and Vitamin A contents in serum are equally great downward, but zero values for Vitamin A and carotin have never been found in healthy men. It was previously mentioned that the liver is not only the organ of storage for carotin and Vitamin A, but also that the conversion of carotin into Vitamin A occurs principally in the liver. This faculty of the liver for conversion seems to gradually decrease with progressing years, for higher carotin and lower Vitamin A serum values are met with in advanced age. During prolonged feeding tests with pure carotin the carotin level of the blood is abundantly increased and the Vitamin A level rises simultaneously, though not nearly so much as the carotin (Wendt). If the administration of carotin is continued long enough there develops, even in healthy men, the picture of xanthosis, a yellow tinged skin due to deposits most evident in the palms of the hand and in the mucous membranes, but particularly not in the sclera. Transmission of carotin into the spinal fluid, urine, perspiration and bile could not be observed nor was there evidence of any elimination in the feces. If Vitamin A (in form of Vogan) is provided during long continued feeding tests, the Vitamin A level rises to a manifold degree without the carotin level being influenced appreciably. During feeding tests with carotin as well as with ready Vitamin A it is noteworthy that a maximum of the carotin or Vitamin A levels once reached after a long time are not exceeded any more in spite of continued supply. Upon prolonged intake of Vitamin A a marked increase of fatty acids and blood lipoids (cholesterin, ethersoluble phosphorus, etc.) is observed, which gradually reverts after some time, though the Vitamin A supply is continued. A positive explanation of this strange observation has not been submitted. It is remarkable on the other hand that in lipemias or lipoidemias seen in man in pathological conditions neither carotin nor Vitamin A appear in increased quantities in the blood. Thus in lipemia of the lipoid nephrosis the Vitamin A figures are within normal limits. The diabetic lipemia is an exception, the carotin and the Vitamin A being regularly found markedly augmented. Just what these connections signify is still obscure. At any rate it is certain that it is not explained by the quantity taken with the food, since it never exceeded the usual amount. Insulin has no influence whatever upon the Vitamin A level. The whole question is yet to be clarified.

Lowering of the carotin and Vitamin A levels in the blood is far more frequently encountered under pathological conditions. Thus we observed in disturbances of the fat absorption, specifically in chronic diseases of the pancreas and in patients with grave gastroenteritis, a reduction of the carotin and Vitamin A values. Likewise in cases of jaundice with retention of bile from the bowel there occur grave disorders of absorption, so that in these patients the blood values for carotin and Vitamin A cannot be successfully raised by providing both of the substances. Whether the sinking levels, however, should be solely attributed to disturbances of absorption in liver disease associated with icterus or in cirrhosis of the liver, or whether the liver pathology as such should be blamed, needs further
exploration. Depletion of the Vitamin A of the organism may reach so high a degree that neither in the serum nor in the liver of patients with cirrhosis may Vitamin A be demonstrated. The manifestations of lack of Vitamin A (keratomalacia, etc.) repeatedly seen in chronic liver diseases with jaundice, liver cirrhoses and in atrophies of the pancreas, find their explanation in the above observations.

The carotin-Vitamin A levels are notably lowered in serious cases of Biermer's anemia. After treatment with fresh liver, by reason of the abundance of Vitamin A in the liver employed, the level of Vitamin A rises perceptibly. However, the idea that there might exist etiological relations between Vitamin A and the incidence of the anemia, must be declined. The preparations so excellent for the successful treatment of Biermer's anemia, like Campolon, are free of Vitamin A. An ascent of the Vitamin A level following successful Campolon treatment does not obtain, and a remission cannot be established by giving Vitamin A (Vogan) alone.

Of greater import, as mentioned above, are the connections between carotin, Vitamin A metabolism and the thyroid gland. Corresponding to experimental investigations, there being an antagonistic behavior between thyroid incretion and Vitamin A, in cases of grave hyperthyroidism with a high rate of basal metabolism, a marked decrease or even a complete absence of Vitamin A could be demonstrated in the serum. Following successful iodine treatment of Basedow patients, or operation, the Vitamin A level resumes its ascent spontaneously. Pursuant with our present knowledge it must be accepted that a rising thyroid activity increases consumption of Vitamin A. In the opposite condition—that of hypofunction of the thyroid (myxodema and cretinism) the consumption of Vitamin A is markedly decreased. It must be assumed at the same time that there exists in these diseases a disturbance of conversion of carotin into Vitamin A and perhaps as in many cases an inability of the liver to store carotin and Vitamin A. Thus, in the serum of cretins no Vitamin A at all nor any trace of it was found, (Wendt, Muench. med. Wschr., 1679, 1935.) These entirely different processes and changes in the carotin and Vitamin A metabolism at first sight lead seemingly to the notable results that hyperthyroidism as well as athyroidism present the same picture respecting carotin and Vitamin A in the blood. The recognition of the increased consumption of Vitamin A in hyperthyroidism has led to an attempt to treat this condition with Vitamin A (Wendt, Muench. med. Wschr., 1160, 1935.) In the First Clinic of Munich they succeeded with large doses of Vogan (three times daily—30 drops) to achieve appreciable gains in weight and in many cases even a reduction of the basal metabolism to normal rates. The iodine Basedow in particular seems to react favorably. Further investigations are necessary to determine the importance of the Vitamin A treatment of hyperthyroidism as compared to other therapeutic measures.

Excellent results have been obtained in the treatment of diseases of the eyes with Vitamin A. Nyctalopia, an early symptom of Vitamin A deficiency, was treated with liver in Egypt (papyrus Ebers) as early as
1000 years before Hippocrates. The French physician Despont treated numerous cases of night blindness (1850-1857) successfully with cod liver oil, whereby he properly surmised that a specific highly active component of the oil was responsible for the curative effect.

That the avitaminotic keratomalacia reacts surprisingly has also been known for a long time. These successes have been materially improved upon since Vitamin A has been provided in the form of concentrates rich in Vitamin A (Vogan). In many other ulcerations of the cornea, however, which off-hand were deemed unrelated to a lack of Vitamin A, local application, instillation of Vogan in the conjunctival sac, has brought about recovery. Thus an extensive ulcer of the cornea in a nursing mother was cured by applying Vogan locally. Such a success becomes evident at once if one is mindful of the fact that the growing of fat during pregnancy and the nursing of the child later force the organism to be deprived of great quantities of Vitamin A. In cases of gravidity, in which the vitamin reserves are small because of a previously deficient nutritional state, and when the nutrition during and after treatment of pregnancy continues insufficient, the manifestations of the avitaminosis may result in disaster. Ulcers of the cornea in cases of hyperthyroidism, in which hypovitaminosis appears in sequence of increased consumption of Vitamin A, are cured with Vogan.

Since animals fed on a Vitamin A-poor diet are especially sensitive toward the most varying infections, the vitamin has been drawn upon to combat them. Investigations have demonstrated, however, that the state of immunity, i.e. the formation of antibodies and of bacteriocidal forces, is not influenced by administration of Vitamin A. The effect of the Vitamin A seems to be limited to those infections, in which a relative or absolute deficiency of Vitamin A in the mucous membranes gives rise to changes in them, allowing the irritants to enter the organism. There are numerous observations, reported in this and other countries, of catarrhal infections, pneumonias, la grippe, puerperal fever, etc. having been improved by Vitamin A. In children, whose skin is very sensitive toward infections, pediatricists have treated this susceptibility with excellent results by enriching the food with Vitamin A. First and foremost the effect of Vitamin A as an anti-infectious vitamin lies in its faculty to prevent or cure the epithelial defects in skin or mucosa. It has been proposed therefore to change the term "anti-infectious vitamin" to that of "epithelium-protecting" vitamin. Attention may be called in this connection to skin changes which come to be seen as prodromal signs of an A deficiency before the typical eye symptoms are yet manifest in the form of an unusual dryness and roughness, reminding one of "goose flesh", known among the blacks as "toad skin". The cause is a keratinization of the epithelial cells due to a lack of Vitamin A. Upon treatment with Vitamin A it disappears promptly just like the most varying inflammatory and summarating skin affections due to epithelial changes (v. Drigalski. Zschr. f. Vitamin f., 3, 37. 1934). Furthermore connected with the described effect of Vitamin A upon skin and mucous membranes is its beneficial influence upon the granulations of wounds by local application. The beneficial effect of cod liver salves and dressings may
Vitamin A Preparations and Their Dosage. 1. Vogan (E. Merck, Darmstadt). The most potent German preparation of Vitamin A represents a Vitamin A concentrate prepared from fish liver oils of high potency. Free from carotin, it contains very small quantities of Vitamin D. One cc. of the substance corresponds to 40,000 biological (rat) units or 120,000 International units.

(a) Fluid form in dropper bottles of 10 cc. each. Average dose per day—5-10 drops (8,000-16,000 units), either in a single dose or divided in smaller doses per diem. Best taken in warm milk, soup or the like.

(b) Tablet form in boxes of 50 (1 tablet contains 4,000 units). Two to four tablets a day, masticated or not.

2. Detavit. (I. G. Farben and E. Merck). A combination of Vitamins A and D, containing about double the Vitamin A of the normal medicinal cod liver oil. Detavit neither smells nor tastes of oil. Children take one-half to one teaspoonful and adults one-half to one tablespoonful daily.

3. Other reliable Vitamin A preparations:
 - A vitamin Degewob (Berlin)
 - Avoleum (British Drug Houses, London)
 - Essegen (Lever Brothers, Port Sunlight, England).

Besides there are numerous preparations obtainable in other countries combining Vitamins A and D.

Clinical Application of Vitamin A and Its Dosage. To start with, a few preliminary remarks. It is self-evident that Vitamin A is to be applied primarily to the specific deficiency of Vitamin A, the classic syndrome of avitaminosis. More difficult to analyze is the problem of hypovitaminosis A. There are surely conditions of latent lack of Vitamin A, which are not at once so clearly apparent; for the spread between the minimum and the maximum is very large with Vitamin A. During pregnancy and lactation, in particular, the vitamin requirement is great and deficiency may exist without it being easily recognized. It is the problem of research to study this question most intensively, so that an uncritical application of Vitamin A may not discredit the proper treatment. In our opinion only a few directions may be pointed out for research to start from.

1. Hemeralopia, xerophthalmia, keratomalacia:
 Generally speaking Vitamin A is given perorally, unless contraindicated by disturbances of the gastrointestinal tract, liver, biliary passages or pancreas (absorption interfered with). Excellent cures with this method have been observed not only in animal experiments but also in man. In most cases of adults ten drops of Vogan three times a day suffice. In children and nursing infants five drops three times daily are sufficient for the treatment of xerophthalmia; in older children a little more is given.
In cases where the absorption of Vitamin A (gastrointestinal-liver-pancreas diseases and jaundice) is not quite reliable, subcutaneous or intramuscular administration must be resorted to. E. Merck and Company have put up a sterile Vogan preparation, which will be on the market in the near future. Ampules of 1 cc. are offered containing as much Vitamin A as the Vogan and are sterile. In accord with our personal experiences a dose of 0.5 cc. is advised to start with. In nursing infants and small children keratomalacia is treated at first with this dose (0.5 cc.) for several days, or with a single dose of 2 cc., which has been deemed adequate. Outstanding successes have been described and observed by ourselves with local instillation of Vogan in the conjunctival sacs. The dose amounts to a few drops daily.

2. Hyperthyroidism, and specifically the iodine Basedow.
In most cases thirty drops of Vogan three times daily will suffice. It is recommended, however, that the Vitamin A blood-level be checked from time to time. As to dosage, we have been careful to keep the level at 5-10 blue units. To obtain this goal a larger quantity of Vogan of forty, even fifty drops, three times daily seems necessary in rare cases (Wendt).

3. Wounds.
For the treatment of serious, deeply penetrating wounds, following injuries, cod liver oil salve in the form of the so-called Unguentolan (Loehr, Chirurg., 6, 5, 1934) has been recommended. The results obtained are excellent. In burns of all sorts (Roentgen included) this therapy seems to do astonishingly well. The question of whether this effect is solely due to Vitamin A has not been decided as yet. Salves containing pure Vitamin A do not seem to render the same service. It is possible that we are dealing with a complex effect in the action of the cod liver oil and that it depends upon the combination of Vitamin A and Vitamin D.

Perhaps there are still other components of the cod liver oil participating—unsaturated fatty acids and the like. At any rate Vitamin A plays an important role, because irradiated cod liver oil, in which the vitamin is destroyed, is not active. As it seems the local application cannot be displaced by the peroral use. Essentially a local effect appears to be the deciding factor.

4. The various skin diseases.
Those associated with suppuration, specifically in small children, are often rapidly improved by adding Vogan to the food. It is to be desired that experiences be recorded in such cases to learn, if (based upon blood examinations) a real deficiency of Vitamin A in the blood might be ascertained. The same holds true in patients susceptible to diseases of the numerous membranes of the respiratory apparatus. And further Vitamin A may be given to patients showing symptoms of the so-called "toad skin", a blood examination indicating a deficiency.
5. General Infections.

In general infections, originating in the skin or mucous membranes, Vitamin A has been repeatedly given with good success. The relative connections are not fully clarified in this respect, so that continued investigations are urgently desired.

BIBLIOGRAPHY FOR VITAMIN A

Anschütz, Nordwestdeutscher Chirurgenkongress, Darmbergsitzung, Hannover, 1933.
Bezzonoff, Bullet. d'hygiène alim. 11, 14.
Birger Rössio, Hoppe-Seylers Zeitschr., 192, 1929.
Birnbacher, Münch. med. Wschr., 1114, 1930.
Brugsch, Dtsch. med. Wschr., 325, 1933.
Dann, Biochem. Journ. 27, 1933.
Debré and Busson, Presse médicale 31, 1934.
Erben, Dtsch. med. Wschr., 954, 1933.
v. Euler, Arkiv. für kemi, mineral. geol., 1933.
v. Euler, Ergeb. Physiol., 34, 360, 1933.
Falta, Dtsch. med. Wschr., Nr. 29, 1936.
Falta, Wien. klin. Wschr., Nr. 8, 1936.
Fasold and Peters, Münch. med. Wschr., 1427, 1933.
THE VITAMINS AND THEIR CLINICAL APPLICATION

Jusatz, Klin. Wschr. 95, 1934.

Loewenthal and Nicholls, Lancet, 709, September 29, 1934.

Lohr, W., Arch. klin. Chir., 179, 312, 1934.

Lohr, W., Der Chirurg., 5, 6, and 263, 1934.

Lohr, W., Zbl. Chir. 31, 1934.

Marx, Arch. klin. Chir., 181, 875 (zit. nach Schneider), 1935.

Mellanby, British Medical Journal, 1, 515, 1926.

Mellanby, British Medical Journal, 1, 677, 1930.

Menken, Dtsch. med. Wschr., 1484, 1932.

Dünningstiel s. b. Jusatz.

Dünnstiel, Mercks Jahresbericht, 1936.

Dünnstiel, Arch. exp. Path. and Pharm., 157, 84, 1930.

Ralli, Flamm, Joffe and Stueck, American Journal of Physiology, 107, 157, 1934.

Skarzynski, Bullet. int. nat. trad. poln. Sci. 2, 1-5.

Stepp, Die Ernährung 1, 1 (1936).

Stepp and Wendt, Z. f. exp. Path. and Pharm., i. Dr., 1937.

Thoenes, Monatsschr. Kinderheilk., 48, 1, 1931.

Thoenes, Jahrb. Kinderheilk., 1, 131, 1931.
Thoenes, Jahrb. Kinderheilk., 139, 200, 1933.
Walb, Therap. Ber., Heft 6, 1936.
Wendt, Münch. med. Wschr., 1670, 1931.
Wendt, Med. Klinik 1, 1936.
CHAPTER TWO

The Vitamin B Group

Introduction. The history of the vitamins, at most, dates from the discovery of Eijkman that the polyneuritis of poultry was caused by an inadequate supply of a specific food substance. This opened a new field, and much later (1911) the beriberi preventive factor was found. It was called “Vitamine” because C. Funk, the discoverer, desired to designate it as a basic protein and therefore a “vital amine”. When still other vital diet factors, effective in small quantities, became known, the name was carried over as a group designation and as such retained, though the newly discovered substances proved free of protein. In the series of vitamins, which were differentiated by assigning a letter, the classic vitamin contained in yeast, the beriberi preventive, received the mark B. That two decades had to pass from Funk’s discovery until Windaus succeeded in finding the exact chemical formula, was because, in the case of Vitamin B, conditions were more complicated than was assumed to be originally. With increasing refinement of biological and chemical methods of investigation it was successfully ascertained that Vitamin B, demonstrated in yeast and green plants, was not a uniform substance, but a mixture of water-soluble, proteinic active materials, difficult of separation from one another. And so the necessity arose for indicating these substances, by the addition of index figures, retaining the letter B. Thus, for the first time, in 1925 the pellagra-preventive B₂ was separated from the real, now called B₁, the beriberi-preventive factor which in time failed again to prove uniform. Later, a whole series of biologically similar (growth-promoting) factors were discovered associated with these substances. They differed in their behavior toward heat and alkali and in that they were needed to a varying extent by certain species of animals. Their significance for man is, as yet, entirely unknown. Finally it has recently been possible to demonstrate an enterotropic B-factor (B₃) (perhaps not uniform). The vitamins known to date are listed in the table on page viii. In the following only those will be discussed which play a proven role in human pathology and therapy.

Vitamin B₁ (Antineuritic vitamin).

A. General part

Historic Introduction. Though C. Funk as early as 1911 worked with highly effective preparations of the antineuritic vitamin (beriberi-pre-
ventive), production of this vitamin in pure form was held up for years because of its sensitivity to heat and alkali. The Dutchmen, Jansen and Donath, who perhaps first succeeded in producing crystalline Vitamin B₁ (only slightly contaminated with B₂) did not recognize its chemical constitution. It was reserved for Windaus (about simultaneously with van Veen in Batavia and Ohdaka in Tokio) to set up the correct gross formula of Vitamin B₁ and prove that of the known vitamins it alone contained sulphur.

Chemistry. Pure Vitamin B₁ has the formula C₁₂H₁₆N₄OS, which forms as a base beautiful crystalline salts, for example the chlorhydrate (melting point 250°) and two sulphates (melting points of 203° and 264° respectively). It is optically inactive, and is easily soluble in water and alcohol. In the purest state it shows a selective absorption at 247 μμ (Holiday). From the properties of the waste products in all probability the following structural formula results (Williams). Instead of the ethyl group there are possibly 2 methyl groups at the pyrimidin ring (Windaus).

\[
\text{N} = \text{C} \cdot \text{NH}_2 \\
\text{HC} \text{N} = \text{C} \cdot \text{NH} \\
\text{N} = \text{C} \cdot \text{C}_2\text{H}_4
\]

\[
\text{Cl} \quad \text{CH}_3 \quad \text{CH}_3\text{OH}
\]

The sulphur combination in Vitamin B₁ presents a form (thiazol ring), which so far has not been found in nature. By careful oxidizing, the colorless, non-fluorescent Vitamin B₁ is changed to a yellow, intensively blue fluorescing dye-stuff, not uniform chemically, but having at least the equivalent vitamin effect of B₁ itself. Thus there exist several substances of Vitamin B₁ character (Kinnersley-O'Brien-Peters). This dye-stuff seems to exist in several isomeric forms, comprised under the name of chinochromes; they are co-responsible for the blue fluorescence of animal organs. One of the chinochromes, the beautifully crystallizing thiochrome C₁₂H₁₄N₄OS occurs in yeast (Kuhn), and by means of ferric cyanide may be produced from Vitamin B₁, from which it differs only by a deficit of 2 H atoms (Barger-Bengel-Todd). The oxidation of Vitamin B₁ proceeds apparently in several steps, the first being reversible, and finally ends up in biologically inert products. The chinochromes, possibly like the flavins, which they also resemble in a physical respect, contain a Pyrimidazin ring. As a result it would follow that Vitamins B₁ and B₂ are chemically related, built up by the plant perhaps from kindred basal substances.
Occurrence. Vitamin B₁ is widely distributed in the plant world. As has been known for a long time, it occurs abundantly in yeast and rice bran, while the decorticated rice is nearly B₁-free. This is the explanation for the frequent appearance of avitaminosis B₁ among oriental people eating rice preponderously. In bread of fully milled white flour it is absent, but is present in bread made of whole grain flour (gray or black bread). The ability to synthesize Vitamin B₁ may be seen in the plant world at the earliest stages of evolution (in bacteria and schizomycetes). Vitamin B₁ is also present in animal organs, especially abundant in liver, heart muscle and kidney, less in brain and skeletal musculature, scarcely in blood, spleen and lung (Brodie-Macleod). The Vitamin B₁ in the organs originates from the nutriment. When the supply of Vitamin B₁ is deficient, the content of it in the organs is likewise diminished, but it never disappears entirely, even in beriberi (Abderhalden-Westenbrink). Thus the issues are retaining tenaciously the last indispensable residue of Vitamin B₁.

It is a noteworthy fact that rats fed Vitamin B₁-free, but carbohydrate-rich diets, do not come down with beriberi, providing they can get it in their own feces (refection). The intestinal bacteria and yeasts of rats fed in this way are apparently able to synthesize Vitamin B₁, which thus present in the feces, is again taken up by coprophagy of the rats. The bacterial synthesis of Vitamin B₁ obtains in the cecum (Guerrant-Dutcher-Forney). Upon resection of it refection ceases. In cattle, which can get along for a long time without Vitamin B₁ supply, the bacteria of the rumen are able to metabolize Vitamin B₁ (Bechdel-Schieblich). The Vitamin B₁ generated by the bacterial metabolism is absorbed directly in the stomach and passes, for example into the milk, the Vitamin B₁ content of which is therefore quite independent of the feed. The Vitamin B₁ content of human milk varies, however, with the kind of nourishment, sinking to nothing if the food is Vitamin B₁-free (Sure; Fasold-Peters). The content of Vitamin B₁ in some of the foods is listed in the chart (by Baker-Vright) on page 36. The customary household cooking diminishes the Vitamin B₁ content of raw materials 50% on the average (Hoff).

Determination. The determination of Vitamin B₁ in foodstuff is generally done biologically, and recently also chemically (colorimetrically). Serving with the biological methods as tests are: growth-promoting, preventing or curing polyneuritis and bradycardia. All of these methods are applicable in restorative and prophylactic form. Generally the former produces more accurate values. The method employed mostly is the curative pigeon test (Kinnersley-Peters). After pigeons, fed polished rice for 2 or 3 weeks, have become ill with manifest beriberi, they receive one injection of the substance to be investigated. The weight of the dose divided by the number of days before the spasms reappear, result in the "pigeon daily dose". It is equal to 1.54 γ of free B₁ base or 1.96 γ of B₁ hydrochloride (Kinnersley-O’Brien-Peters). It has been shown recently that the "heart-test" in rats, held for a time as nonspecific, being simpler technically, gives more uniform results (Birch-Harris). Young rats fed Vitamin B₁-free diets develop in about 2 weeks the syndrome of a grave bradycardia, which by adding Vitamin-B₁-containing material is
relieved just so much longer as the given substance is rich in Vitamin B₁. The Vitamin B₁ content of it may be calculated, if compared with a standard Vitamin B₁ preparation. The rat-growth test of Chick and Roscoe is based on the original definition of the international B₁ unit. The rat-growth unit is that quantity of Vitamin B₁ which produces in those rats which have ceased to grow from lack of Vitamin B₁, an increase in weight of about 12 gms. weekly. Since the value of this rat-growth unit fluctuated somewhat, the international unit was later defined differently. An adsorption by 3 kg. of Fuller's earth of an extract of 100 kg. of rice bran was established as standard preparation. 10 mg. of this adsorption contain one International unit. It is somewhat smaller than a rat-growth unit and about equivalent to 1.80 γ of the crystalline vitamin (in form of the free base), which is not used as a vitamin standard for the reason that its manufacture in pure form is too precise and costly. The color reaction adaptable to a colorimetric determination of Vitamin B₁ is based on the fact that the vitamin produces a red color with diazobenzolsulphonic acid in a carbonized caustic soda solution of a fixed composition upon addition of formaldehyde (Kinnersley-Peters).

Requirement of Man. The requirement of B₁ in a healthy man differs from the other vitamins, as it presents no constant magnitude. It can only be approximately stated in figures. In a complex manner it is primarily dependent upon the quantity of nutriment taken, insofar that it is the greater, the more carbohydrates are supplied, and the less the more fats are consumed. In the elaboration of the organism B₁ is used up, so that its consumption runs parallel to the quantity of carbohydrates converted (Lecoq, Amantea) while the fats are saving the vitamin (Evans-Lepkovsky, Guerrant-Dutcher, et al). Correspondingly the incidence of an avitaminosis B₁ is accelerated by carbohydrates and impeded by fats. The B₁ requirement does not seem to depend upon the protein metabolism (Prunty-Roscoe). Because of the opposing effect of carbohydrates and fats and the B₁ consumption in the body, a consistent relation in figures between caloric supply and B₁ requirement does not exist in man. That 20 calories require one rat-growth unit B₁, as submitted by Jung is to be taken with reserve and only applicable to an ordinary mixed diet. The exact determination of the daily B₁ need in man is difficult since it is largely dependent upon the intensity of the metabolic processes (Cowgill-Palmierie). If the general metabolism is increased by the administration of thyroid or thyroxine, the B₁ requirement rises. It is possible, therefore, that symptoms of B₁ deficiency develop with thyroid administration with an otherwise sufficient B₁ supply, and conversely the clinical syndrome of hyperthyroidism may be favorably influenced by an abundant B₁ administration (Himwich, Goldfarb, Cowgill, Sure-Smith). The alcohol polyneuritis in a similar manner must be viewed as a sign of a B₁ insufficiency, the alcohol affecting a metabolic increase and thereby a greater consumption of Vitamin B₁ (Minot). There is also a direct numerical relation between the magnitude of body performance and B₁ requirement (Cowgill). A typical symptom of B₁ insufficiency is adrenal hypertrophy as seen under normal nutritional
conditions after hard bodily exercise, which fails to occur if a working animal is supplied from 3 to 5 times the quantity of Vitamin B1 normally required (von Bezak-Perjes). A rising external temperature increases Vitamin B1 consumption (Kliger-Geiger-Mueller), which plays a role in tropical and infantile beriberi as well as in febrile diseases (Cowgill-Widenbauer). In infancy, during pregnancy and lactation, and also in the Spring (increased hormonal and metabolic activity) the need of Vitamin B1 rises. Under these conditions phenomena of avitaminosis easily develop. A nursing rat, to raise healthy offspring, needs from 2 to 5 times more B1 than is necessary for its own use (Sure-Evans-Burr). The Vitamin B1 requirement increases, furthermore, with the body weight (Cowgill has submitted a formula permitting a calculation of the necessary Vitamin B1 from the weight of the body). Finally it may be seemingly increased when the assimilation of the Vitamin B1 supply is restricted by gastrointestinal affections.

Of great clinical import is the fact that the spread between the quantity of Vitamin B1 necessary for the maintenance of health and that for optimal growth is particularly wide. A young rat, to grow, needs 3 to 5 times more Vitamin B1 than is needed for it to maintain weight and normal well-being (Cowgill). Williams, moreover, has observed maximal growth only following a dose of Vitamin B1 100 times the one preventing polyneuritis. Something similar applies to man. The cure of deficiency phenomena demands abnormally large Vitamin B1 quantities which are frequently not applicable by way of diet. In such cases, especially when accompanied by gastrointestinal disturbances, the modern parenteral B1 concentrates enter into their rights.

It follows therefore that a general rule for the Vitamin B1 requirement of man can scarcely be made. The assumption that the daily minimum lies between 250 and 750 may approach the actual conditions. The Section of Hygiene of the League of Nations, figures it at 300 International Units, equalling 550 Burnet-Aykroyd Units. The optimum Vitamin B1 supply, however, in man is doubtless much higher, perhaps between 1 and 2 mg. per diem.

Vitamin B1 Behavior in the Organism. The Vitamin B1 supplied with the food is absorbed in the small intestine (Scheunert-Schieblich) and stored in the organs. These Vitamin B1 depots of the organs do not entirely disappear even after prolonged Vitamin B1-free feeding. The vitamin is secreted into the gastric juice in which it is found abundantly (Komarov) except in pernicious anemia (Karczag). For activation Vitamin B1 (Castle), just like the pernicious anemia factor, needs coupling with an endogenous ingredient of the gastric juice. The unused Vitamin B1 is eliminated in the urine; it is only at times of great need of Vitamin B1 that not a trace of it appears in the urine even after a large supply of B1 (Baglioni).

Physiology. Vitamin B1 does not increase oxidation, an effect formerly ascribed to it, but it exercises a pronounced influence upon the carbo-
THE VITAMINS AND THEIR CLINICAL APPLICATION

Hydrate metabolism. Of particular importance and decisive for the spasm-preventing effect of the B₁ factor is its participation in the sugar metabolism of the central nervous system. Brain emulsion of Vitamin B₁ avitaminotic pigeons in the presence of lactic acid or glucose does take up far less oxygen than that of healthy animals, its respiration is, therefore, much weaker. Addition of crystallized Vitamin B₁ fully restores respiration (Grarilescu-Peters). For the process of sugar conversion Vitamin B₁ is indispensable. This fact allows a quantitative evaluation in the brain emulsion of beriberi pigeons (Katatolurim test of Passmore-Peters). Especially great seems to be the need of the vitamin in the cerebrum and in the basal ganglia. Also the respiratory quotient is reduced in the beriberi brain and is renormalized by addition of B₁. The extent of the respiratory decrease runs parallel to the symptoms of brain pathology. The point of attack of the Vitamin B₁ effect in the brain is not the lactic acid, since the beriberi brain still normally removes this acid (Meiklejohn), but its product of oxidation, the pyroracemic acid, which is normally catalyzed immediately. In beriberi, however, it accumulates at first only in the brain and later also in the blood, where it is easily shown (Thompson-Johnson). Somewhat different is the working mechanism of Vitamin B₁ in the heart muscle, in the sugar metabolism of which it is specifically engaged. Zwaardemaker could show that crystallized Vitamin B₁ stimulated isolated auricles to beat; it is therefore a genuine Automatin. The oxidizing ferment of lactic acid in the heart muscle, forming during the energy producing sugar catalysis, may only continue to oxidize in the presence of two auxiliary ferments, first the co-enzyme (of Banga-Szent Györgyi), second Vitamin B₁ (Birch, Mann). The sugar oxidation of the heart muscle in beriberi is not only impeded at the pyroracemic acid stage, but already at that of lactic acid. At an early period in avitaminosis B₁ a lactic acid stasis is established and a direct sequence of that is a sinus bradycardia (Birch-Harris). Later lactic acid is also increased in the blood and in other organs (Collazo-Bayo). The carbohydrate respiration is likewise dependent upon the presence of Vitamin B₁ (Thompson) in the kidney, but not in the other organs. In the liver Vitamin B₁ seems to be involved in the glycogen metabolism itself, but the manner of it is not clear (Sure, Abderhalden). The often found increase of Methylglyoxalidin in the blood and urine with avitaminosis B₁ (Vogt-Moeller, Geiger), claimed by Lehman to be non-specific, indicates the Vitamin B₁ is not only active in the catalysis of lactic acid, but also in its formation in the body. (Methylglyoxal is a precursor of lactic acid.)

The importance of the Vitamin B₁ substance for heart function:

Vitamin B₁ in its purest crystalline forms is accompanied by Vitamin B₂ and its carrier—adenin. Guha and Chakroverty have shown that adenin (impure) acquires Vitamin B₁ effect by radiation. These facts point toward relations between Vitamin B₁ and the cardioactive Purin (Adenyl) derivatives, the properties of which are unknown.

Vitamin B₁ furthermore influences the Water economy of the body, though the mechanism of this process is not exactly known. Absence of this
activity with Vitamin B₁ deficiency is followed by incidence of edemata, hypoproteinemia, serous effusions and water imbitions of the heart muscle. The edemata are of extra-renal nature. Their genesis is not clear, since neither the capillary permeability nor the avidity for NaCl and water of the tissues is increased with the incidence of these edemata.

The often observed lipemia in beriberi is essentially effected by a disturbance of the normal close reciprocal relations of Vitamin B₁ and adrenal cortex. It hypertrophies during Vitamin B₁ deficiency and with hard muscular work, which raises the Vitamin B₁ consumption. In both cases by an increased supply of the vitamin the hypertrophy is impeded or reduced. Injections of cortin on the other hand may considerably improve the phenomena of Vitamin B₁ deficiency and retard their incidence (Schmitz, Lockwood-Hartman).

The varied gastrointestinal symptoms of lack of Vitamin B₁ indicate that the vitamin exercises a protective function in the gastrointestinal canal also. The extent of this intestinal activity cannot be definitely estimated and its study is rendered difficult by the fact that other factors of the Vitamin B group are engaged in the gastrointestinal tract. For the present it is established that Vitamin B₁ is indispensable for the maintenance of the normal tonus of the gastrointestinal musculature (Sure, Cowgill) as well as for the normal processes of absorption, especially that of fat (Evans-Lepkovsky).

Symptoms of Vitamin B₁ Deficiency. The clinical manifestations of Avitaminosis B₁, however varied they may appear, can be essentially reduced to two causes: The disturbances of the carbohydrate metabolism affecting the central and peripheral nervous system and the heart, and the damage to the water economy. The classic syndrome of polynéuritis accompanied by hemorrhage and degenerative changes in the peripheral nerve fibers, appearing most expressively in pigeons and chickens, but also existing in higher mammals (lion) and more rarely in rats (ataxia, opisthotonos, rotary spasms) has its histological correlation in hemorrhage, absence of the Nissl granules, chromatolysis, and degeneration of the medullary sheath. These lesions in contrast to those in man, where they are localized in the central nervous system, occupy the foreground and dominate the clinical picture. Furthermore signs of extra-renal disturbances of the water economy participate which may become dangerous to life by spreading to the heart muscle. There occur gastrointestinal symptoms, as atony, cessation of peristalsis, achylia, inflammation of the mucosa and in connection an early anorexia. The subnormal temperatures in beriberi result probably from the restriction of the carbohydrate metabolism.

It is of greatest practical importance that B₁ deficiency during growth, even if clinically latent may lead to a gene lesion which may only make its appearance in the second daughter generation. The offspring of rats, which were fed B₁ deficiently in their youth, present in the first generation 1%, and in the second generation 22%, of congenital obliteration of the pylorus (Mueller).
THE VITAMINS AND THEIR CLINICAL APPLICATION

B. Relations to Other Vitamins. The law that all vitamins form a functional unit, none of them unfolding its physiological effect independent of the others, is especially apparent in the close correlations existing between Vitamin B₁ and the rest of the vitamins. The relation of Vitamin A to Vitamin B₁ is antagonistic insofar as by generous A supply the symptoms of lack of Vitamin B₁ are increased and inversely a hypervitaminosis A is favorably influenced by B feeding (Yonechy, Chevallier). On the other hand Vitamin A as well as Vitamin B₁ oppose thyroxine and Vitamin D. A diet rich in Vitamin B₁ decreases the effect of an hypervitaminosis D (Jusatz). Moreover there is an antagonism between B₁ and B₂ within the Vitamin B group. Large doses of Vitamin B₁ accelerate an outbreak and aggravate the symptoms of pellagra (Kellogg-Eddy, Györgyi).

Vitamin B₁ Commercial Preparations. Solutions of pure crystalline Vitamin B₁ are not commercially obtainable so far in Europe. Concentrates of Vitamin B₁ from yeast or wheat germ are released by I. G. Farben Industry under the name of Betaxin (Amp. of 2 cc.—about 0.4 mg. of chlorhydrate of Vitamin B₁) and by the Glaxo Research Laboratory (London), (Name not pat.). E. Merck is the only firm making a pure crystalline Vitamin B₁ in Amp. of 1 cc., containing 5 mg. of Vitamin B₁ chlorhydrate. The employment of these preparations is principally indicated when it is desired to overcome acute signs of deficiency with heavy doses of Vitamin B₁ given parenterally. In all other cases, chiefly in non-specific conditions due to suboptimal Vitamin B₁ supply or for purposes of prophylaxis, the pure Vitamin B₁, not being available in sufficient quantity, we are limited to material made from yeast and given per os. Containing all the other vitamins of the Vitamin B group besides Vitamin B₁, they provide the necessary Vitamin B₁ and a coordinate supply of all other Vitamin B factors. Such are: (approximate content of Vitamin B₁ in 100 gm.):

- Levurinose “Blaes” (about 5000)
- Extract Cenovis (8000)
- Ovamaltine (600)
- Veguva (1000)
- Bemax (Vitamin Ltd., London) (2500).

The yeast products Vitox, Marmite and Vegex are Vitamin B₁-poor. The required average daily dose in hypovitaminosis B₁ may be calculated from the Vitamin B₁ content in the particular preparation. For Levurinose it is 15 to 30 gm.

Hypovitaminosis B₁ as a Problem of Nutrition. Only a few years ago it was generally accepted that in tropical countries Vitamin B₁ was sufficiently provided and a lack of it as a cause of morbid conditions was out of the question. Von Tyszka in Germany and Alvarez and Cowgill in the United States could prove with a mass of statistics that under normal conditions the diets of the general population would guarantee a sufficient Vitamin B₁ supply. To conclude from these statistics that with us a danger
of a lack of Vitamin B\textsubscript{1} is non-existent, would be a mistake. Even under physiological conditions (growth, gravidity, lactation, muscular action, and carbohydrate diet) and above all in morbid states (fever, gastrointestinal disease, hyperthyroidism) the Vitamin B\textsubscript{1} requirement rises to a multiple of the normal, so that a diet of an ordinary supply of Vitamin B\textsubscript{1} fails to suffice. This danger is especially imminent among white bread and sugar-eating people, who receive too little Vitamin B\textsubscript{1} (Mueller) in relation to their large carbohydrate consumption (Simpson). Hypovitaminosis B\textsubscript{1} plays, among the higher classes socially, a considerable and so far underestimated role (much greater than the lack of Vitamin A and Vitamin D) for the reason that Vitamin B\textsubscript{1} often fails to parallel the quantitative betterment of the nutrition. In our countries there is not only the danger of an occasional relative lack of Vitamin B\textsubscript{1}, but the calculations of Schroeder and Wittmann have demonstrated that a series of the usual hospital diets contain so little of Vitamin B\textsubscript{1} that the minimum need is not even approximately covered. That pertains particularly to the ulcer, renal, diabetic, and ketogenic diets. More serious is the statement of Schroeder that the general house diet of a certain hospital in Munich, carefully examined at different seasons proved continuously quite inadequate as to Vitamin B\textsubscript{1} content. Hence it follows that avitaminosis B\textsubscript{x} constitutes, in our latitudes also, a hazard not to be underestimated, though it is not realized by the clinicians.

Indications for Vitamin B\textsubscript{1} Administration

Contrary to the well-known syndrome of Vitamin A, C and D deficiencies, the clinical signs of lack of required Vitamin B\textsubscript{1} have found but slight attention and have been studied but little. Its recognition will enable a physician to interpret many so far indefinite syndromes as consequences of Vitamin B\textsubscript{1} deficiency and thereby bring speedy relief with an abundant Vitamin B\textsubscript{1} supply.

1. Primary Non-tropical Avitaminosis B\textsubscript{1} in Man. Generally speaking the lack of Vitamin B\textsubscript{1} in our latitudes, giving rise to clinical manifestations, is secondary, i.e., due to an increased Vitamin B\textsubscript{1} need subsequent to other diseases or to an impeded Vitamin B\textsubscript{1} absorption from gastrointestinal affections. The primary form of Vitamin B\textsubscript{1} insufficiency is of rare occurrence in Europe and the United States. As an extreme expression it may sporadically appear in our countries—the edematous or dry beriberi (Brauchel, Staehelin). However, much more difficult to recognize, more important and widely disseminated, is the resultant status of a long continued Vitamin B\textsubscript{1}-poor nutrition, described by Elsom. In adult patients fed for months on a diet very scant in all factors of the Vitamin B group, it was demonstrated by successively adding first Vitamin B\textsubscript{1}—later B\textsubscript{2} and finally Vitamin B\textsubscript{1}, B\textsubscript{2} plus yeast, what part each played in the symptom complex developed. The addition of Vitamin B\textsubscript{1}, continued for twelve weeks, caused a number of symptoms to disappear, indicating thereby the signs of a straight Vitamin B\textsubscript{1} deficiency: general muscular weakness, pain and paresthesias of the arms and legs,
ecchymoses of the extremities, hypoproteinemia and edema, and loss of weight was connected with their effusion, furthermore, subnormal temperatures and lowered blood pressure. With the addition of Vitamin B₁ the temperature rose from 96.6 to 98.6, the systolic blood pressure from 95—100 to 130—135 mm. Hg., and albumin content of the plasma from 4.4 to 5.5%. Unimproved were the gastrointestinal disorders, the increased reflexes and the decreased sensibility and the glossitis. These phenomena do not arise from Vitamin B₁ deficiency or rather not from Vitamin B₁ deficiency alone. Appetite and body weight began to approach normal when all of the Vitamin B factors were present in the diet. It was observed that the addition of fat alone would improve the symptoms of Vitamin B₁ deficiency, but only for the period the fat was given, confirming reports that fat has Vitamin B₁-saving effect. Besides this rare, pure form of the primary Vitamin B₁ deficiency, sickness may appear as famine (hunger) edema concomitant with deficiency phenomena resulting from want of other vital nutritional factors, such as proteins. Here the signs arising from an upset of the water economy due to Vitamin B₁ deficiency are especially prominent. The famine edema like the edema of beriberi is accompanied by hypoproteinemia, often it is also combined with grave lesions of the central nervous system, which similize those of beriberi, and with funicular myelosis (disseminated sclerosis) (Schlesinger), again pointing to the fundamental Vitamin B₁ deficiency. Food rich in Vitamin B₁, but above all, injections of crystalline Vitamin B₁ effect a rapid disappearance of the famine edema. These related conditions in pediatrics are to be discussed later.

2. Secondary and Symptomatic Avitaminosis B₁. (a) Neurology. The clinical manifestations of a secondary or symptomatic Vitamin B₁ deficiency, very frequent with us and multiform, are easiest to recognize and interpret if symptoms arise resembling genuine beriberi, i. e. disturbances of the central nervous and peripheral nervous systems. Both occur. It has been shown that polyneuritis of seemingly different etiology develops upon the common ground of Vitamin B₁ deficiency and that they may be cured by an abundant supply of Vitamin B₁. In alcoholic polyneuritis the exciting factor is the alcohol (Minot) which raises the metabolic rate increasing the Vitamin B₁ requirement. Inferior nutrition and gastrointestinal disorders act frequently as causative agencies (Cowgill) (Shattuck). The evolution of polyneuritis of pregnancy is explained by the enormously increased need of Vitamin B₁ (Plass, Mengert). Administration of yeast or nourishment rich in Vitamin B₁, best with liver medication at the same time, cures the polyneuritis without exception, even if the alcohol consumption is continued (Minot-Strauss-Cobb, Strauss). Similar successes are obtained with yeast therapy in polyneuritis of pregnancy. The polyneuritis following malaria and other febrile diseases develop in an analagous manner, metabolism being increased and the Vitamin B₁ requirement raised. In Java, China, above all in Egypt and Brazil, beriberi appears very frequently following malaria (Cowgill). Its effect of raising the metabolic rate has been recognized by Du Bois. Diabetic polyneuritis is also a manifesta-
tion of a Vitamin B₃ deficiency probably due to a synchronous disturbance of carbohydrate and Vitamin B₇ evaluation. It is also curable by yeast administration, or at least, it is favorably influenced by it (Wohl, Minot). Vorhaus reports curative successes with crystallized Vitamin B₁ in several cases of polyneuritis of undefined genesis.

The similarity of symptoms of infantile beriberi and chorea minor (choreatic movements, circulatory disorders, gastrointestinal symptoms) and then the fact that chorea almost invariably occurs during periods of increased need of vitamin, (following infectious diseases, during growth and pregnancy), seem to make it appear extremely reasonable that chorea is a disease due to a Vitamin B₃ deficiency. Indeed the administration of Levurinose (15 to 30 gm. daily) always effects a cure in infantile chorea minor and paralytica (Widenbauer). The funicular myelosis has to be regarded as a very important manifestation sequential to chronic Vitamin B₁ deficiency (Minot, Castle, Morewitz). It is often seen in beriberi and may be experimentally produced in dogs by Vitamin B₇-free feeding (Gildea-Castle-Kattwinkel). As a concomitant manifestation of pernicious anemia, pellagra, sprue, lathyrism and many forms of achylia, it is, however, not a partial symptom of these diseases, but secondarily enforced by coexisting nutritional disorders fundamental for a deficient Vitamin B₁ absorption (Rhoads), that accounts for the failure of the generally successful liver therapy, if the usual Vitamin B₁-free preparations are employed, while fresh liver rich in Vitamin B₁ often improves the cord symptoms also (Meulengracht). The funicular spinal lesion, the idiopathic form as well as the pernicious anemia, is essentially improved, indeed often cured, by administration of brewer’s yeast or Levurinose (daily 20-30 gm.) or by injections of Vitamin B₁ liver preparations like Betaxin on the presumption that there are no irreparable destructions of the posterior column (Illing, Fouts). The curative success is especially impressive in cases where liver preparations had removed the anemia, but not the cord symptoms. Incontinence, ataxia, paresthesias and spastic symptoms disappear upon yeast feeding. According to Castle, Vitamin B₁ to affect the spinal symptoms, needs coupling with an endogenous principle just like the pernicious anemia factor. That agrees with the observation that duodenal juice of healthy individuals, containing the endogenous principle as well as the Vitamin B₁, has vanquished grave cord symptoms in pernicious anemia.

Starting from the idea that pure vitamins, beyond their function as accessory nutrients, might evolve real curative effects in diseases not due to vitamin deficiencies, and because of the fact that Vitamin B₁ is a specific neurotropic diet factor, investigations have been made of late to learn if applications of Vitamin B₁ might favorably influence neuralgic conditions, such as sciatica and trifacial neuralgia. In several severe cases of sciatica (acute and chronic), having proved refractory to all other treatment, parenteral application of Vitamin B₁ was used (2 cc.-10 mg. crystalline Vitamin B₁ chloride “Merck” every other day) (3-5 injections), or 1-2 ampules Betaxin (0.8-1.6 Vitamin B₁ chlorhydrate) daily, for 5-15 days, and a rapid, often striking, reduction of complaints and in addition the restitution of a normal walk occurred. Also two cases of trifacial neu-
ralgia were markedly improved in a short time by Vitamin B₁ injections, while a coexisting facial paresis in one of the cases remained uninfluenced.

(b) Internal Medicine. It has been known since 1920 (Karr, Cowgill) that loss of appetite in an animal is the first sign of a beginning avitaminosis B₁. The loss of weight and the reduction of general metabolism appearing later in the course mean nothing else but the sequence of inanition due to the loss of the natural sensation of hunger. In man also a long continued anorexia, other causes not being established, may be induced by Vitamin B₁ deficiency (Kruse, McCollum). A recognition of this is of great importance, since on this basis a vicious circle may very easily evolve. Anorexia frequently leads to chronic lack of Vitamin B₁ despite sufficient supply, foreshadowing, in such instances grave symptoms of deficiency (especially in mental patients in closed institutions). Beriberi is widely known in the Orient in mental cases whose instinct of preservation is often reduced. In convalescents often a Vitamin B₁-poor hospital diet lasting for months is the cause of a continued anorexia, so that a lack of the vitamin must be considered. In several cases of obstinate loss of appetite (own observation with rheumatics) after all other remedies had failed, 1 or 2 injections of crystalline Vitamin B₁ (10 mg.) brought immediate improvement of appetite and general well-being. On the other hand the observation of Elsom that the administration of other vitamins are necessary to maintain a normal appetite is important.

Anorexia from lack of Vitamin B₁ is probably explained by the fact that the normal production of gastric juice, under a deficiency of Vitamin B₁, diminishes or ceases (Cowgill-Gilmann, Webster, Armour). In beriberi of infants achylia is a frequent symptom (Ohta). It pertains particularly to the juice constituents necessary for the normal function of the gastric mucosa, for in rats and dogs a Vitamin B₁-free diet leads to gastric ulceration (Dalldorf-Kellogg) (Sure-Thatcher). This also holds good for man. Investigations among Scandinavian country people whose nutrition is relatively vitamin-poor indicate with great probability that among the causes of gastric and duodenal ulcer formation the lack of Vitamin B₁ looms large (Schiedt). In view of these observations an attempt with parenteral Vitamin B₁ preparations in ulcer therapy holds out great prospects, especially since the Vitamin B₁ content of the usual ulcer diets are insufficient even for normal needs.

Avitaminosis B₁ in animal experiments is often accompanied by loss of peristalsis and of the normal tone of the gastrointestinal musculature. Gastrointestinal atony, usually combined with anorexia, may in man likewise be caused by a lack of Vitamin B₁. In such cases injections of crystalline Vitamin B₁ effect prompt improvement of the atonic state and of peristalsis, constipation vanishes and the appetite returns (Vorhaus). It has been variously asserted that inflammations of the intestinal tract are of Vitamin B₁-poor nutrition. Diarrheas with a colonic base, membranous and ulcerative colitis are favorably influenced by a diet rich in Vitamin B₁ (Larimore). However, in none of these cases had it been proven that the intestinal pathology was really based upon a Vitamin B₁ deficiency.

It must be reiterated that avitaminosis B₁ outside of the tropics almost
never occurs in man in pure form, but usually combined with a deficiency of all Vitamin B factors. Thus the expressive intestinal symptoms, produced by the withdrawal of all B vitamins, do not respond to Vitamin B1 additions, but disappear only when the whole Vitamin B group is given (Elsom). The vitamins possessing the curative effect are Vitamin B2 and Vitamin B7. Ulcerative colitis in particular is a symptom of a deficiency of Vitamin B2. On the other hand successes have been obtained in colitis with large doses of Vitamin B1 (Brown). This finding to be investigated further, indicates that regarding the prevention of inflammatory processes in the intestine there exist complicated reciprocal relations of function between the separate factors of the Vitamin B complex. Upon the evidence of animal work it is certain, however, that for the normal processes of absorption and utilization of food Vitamin B1 is indispensable (Westenbrink, Griffith, Evans-Lepkovsky). This relates notably to the absorption of fat (Verzar). Intestinal affections with disturbances of fat absorption in man are therefore favorably influenced by abundant administration of Vitamins B1 and B2 (Thannhauser). The famine (hunger) edema, mentioned as the primary manifestation of Vitamin B1 deficiency, may also appear secondarily in diabetes, ulcerative colitis and following operations upon abdominal organs and may be removed in these cases by generous doses of Vitamin B1 (Brown). The functional deterioration of the intestinal epithelium ensuing from Vitamin B1 deficiency, resulting in disturbances of absorption, may further bring about resorption of arthritis-producing toxins and diet residue (Fletcher, Wyatt et al). The frequent combination (Tiemann) of gastrointestinal affections with chronic articular rheumatism (held by American authors as essential) is probably evidenced by the surprising successes occasionally achieved by generous administration of Vitamin B1 (Fletcher, Neuwirth, Pemberton). In animals Cerulli could also produce deforming arthritis. The British Medical Association officially recommends Vitamin B1 concentrates in arthritis and fibrositis. The close relation of Vitamin B1 to carbohydrate metabolism has stimulated the use of it in the therapy of diabetes mellitus. The hypoglycemic and glycosuria-reducing effect of peroral yeast administration has been known a long time and in animal experimentation, at least, assured beyond a doubt (Beckel, et al). Twenty years ago von Euler and Svanberg established the antidiabetic effect of yeast extracts, which has also been observed in man. It has been suggested that daily doses of dry yeast (10 to 30 gm.) in cases of diabetes of medium grade may entirely or partially replace insulin (Vogt, Hoepfner-Klotz, Melcer, Mansberg, Winter-Smith). Von Drigalski alone failed with yeast with his diabetics. The reason may be found in the length of time he used the yeast (11 days), while Melcer, Gringoire, et al. insist on giving it for six or eight weeks before success may be expected. The effect lasts much longer than that of insulin. One might explain this with the necessity for refilling the depleted depots. However, further investigation is necessary. Whether the insulin-like substance of the yeast (von Euler) is identical with Vitamin B1, has not been determined with certainty so far. In pigeon beriberi, a rise of blood sugar and blood lactic acid is almost constantly found, and is removed by
Vitamin B₁ (and allegedly by insulin). On the other hand as has been mentioned, the point of attack of Vitamin B₁ in sugar economy is entirely different from that of insulin. This does not contradict the possibility that Vitamin B₁ and insulin have a similar effect, since we know that the radiation products of ergosterin (Vitamin D and A. D. 10) may entirely replace the parathyroid hormone, however different their working mechanism may be. Clinical trials with crystalline Vitamin B₁ have not shown any positive results so far. Purified Vitamin B₁ preparations in the hands of Sainton, Mills and Labbé have proven to be strongly effective in diabetes. While Stepp failed to influence the blood sugar in health and diabetes, Williams and co-workers have reported frank successes with large doses of pure Vitamin B₁ in diabetes. It is evident that dosage plays a considerable role. Further investigations in this direction are urgently desired, because of the possibility that we may possess in Vitamin B₁ for the first time, a true and physiologically vital peroral antidiabeticum in an isolated and chemically homogeneous form. Since thyroxin increases the need for Vitamin B₁, as mentioned, the danger of symptoms arising from Vitamin B₁ deficiency in hyperthyroidism is real. Care is therefore necessary in morbus Basedow to procure an adequate supply of Vitamin B₁ (besides Vitamin A).

Administration of extracts of yeast affect symptoms of Basedow favorably (Abelin). Conversely with a deficiency of Vitamin B₁ the production of thyroxin is restricted. Usually with avitaminosis B₁ atrophy of the thyroid is found and also the clinical symptoms of hypothyroidism (Verzar, Pighini, Kühn). Because of this fact a chronic hypovitaminosis B₁ has been made responsible for endemic goitre besides the iodine deficiency. It has been shown in regions of Switzerland, where goitre is rampant, that the nutrition of the people is markedly deficient in Vitamin B₁. In cows kept in barns during the winter and given a vitamin-poor diet, colloid goitres appeared which were reduced as satisfactorily with feed rich in Vitamin B₁ as with iodine (Fischer). In view of the close relationship between fat metabolism, iodine and thyroid (Chidester) the restorative action of Vitamin B₁ is possibly due to the fact that Vitamin B₁ may normalize the fat absorption and the lipid economy.

(c) Pediatrics. Less frequently in the adult than in the nursing infant and the small child we meet with disease conditions subordinate to deficiencies of supply or of assimilation of Vitamin B₁. In infancy the Vitamin B₁ requirement is far larger than it is later, and the principal nourishment, mother’s milk, itself containing little of Vitamin B₁, grows poorer still if mother’s diet is short in Vitamin B₁. It is of interest that the symptoms of Vitamin B₁ deficiency appear in the nursling due to inadequate Vitamin B₁ in the mother’s diet despite the mother’s health being perfect clinically (the opposite in diabetes). In contrast to the sporadic occurrence of non-tropical beriberi in the adult the infantile beriberi is not at all rare in our latitudes. The recognition of its symptoms (pallor, irritability, loss of weight, gastrointestinal and cardiovascular disturbances, liver swelling, edemata, oculomotor and recurrent pareses and meningitis), however, is not sufficiently established (Rice, Hoobler). The good results following
a generous supply of Vitamin B₁ in infantile beriberi are reported especially by American authors (Bloxsom, Waring, Haas). In the United States, an abortive form of beriberi is widely spread in nursing children at an age of 3 to 12 months. The symptoms are: pallor, loss of weight, motor unrest, neck stiffness and muscular spasms of the extremities and secondary anemia (also adduced to Vitamin B₁ deficiency as reported by Stiner in Switzerland). Such a hypovitaminosis B₁ is quickly cured with yeast (one-half teaspoon daily) or with a concentrate of wheat germ, which is more palatable and miscible with the food. If more notice were taken in our country (Germany) of the phenomena of Vitamin B₁ deficiency, sickness would certainly be recognized. In weak anemic and indisposed children beyond the nursing age a daily dose of prepared yeast 5-10 gm. for a short time (Mueller, Hess, Hoobler, et al) brings well-being and thriving growth. Between beriberi of infants and spasmophilia are fluent connections. Beriberi symptoms (cardiac enlargements, nerve degenerations, etc.) are likewise noted in spasmophilia, in the etiology of which a lack of Vitamin B₁ doubtless plays an active role (Reyher). The curative results with yeast in the treatment of spasmophilia are thus explained (Macietta). Flour (Ohta) and milk sickness (Widenbauer) may also go together with manifestations of Vitamin B₁ deficiency, as indicated by flour raising the Vitamin B₁ need and the shortage of the vitamin in the milk. There are great possibilities for Vitamin B₁ therapy in this field.

The symptoms relating to a disturbed water economy arise in isolated form in nursing infants, and that in relation to one or the other tendency of diarrhea or of edema. The intestinal autointoxication (exsiccosis) is comparable either to the dry beriberi or to the famine (hunger) edema corresponding to the moist beriberi. Both diseases despite opposing symptoms are related (Stolte); they have in common the tendency to acidosis, scanty diuresis and their response to salt (NaCl) and Vitamin B₁. In the nurslings, the symptoms of exsiccosis, like all manifestations of Vitamin B₁ deficiency, are aggravated by high external temperatures. There is found an increased methylglyoxal elimination in the urine, indicating the etiological role of Vitamin B₁ deficiency (Geiger-Rosenberg). A condition closely resembling exsiccosis may be produced in a dog with Vitamin B₁-free feeding (Stucky, Rose). Following the experience of Cowgill, it is recommended not to inject large quantities of saline, as in the past, (the diuresis forcing elimination of Vitamin B₁, thereby increasing the need of the vitamin), but to stress the supply of Vitamin B₁ besides an abundance of liquids. Reyher could remove the exsiccosis with doses of dry yeast and the diarrhea desisted with remarkable rapidity. What was said of the famine edema of the adult holds good equally for the infantile edema (for example, in diabetes because of the restriction of the diet).

Among the causes of infant mortality avitaminosis B₁ plays its part. On the South Sea island of Nauru, during 1927-1928, 45% of all infants died during the first year of life. Shortly before, the pregnant natives had been forbidden to drink a brew of coconut milk, a toddy rich in Vitamin B₁. The deaths were therefore the sequence of an avitaminosis B₁, caused by a Vitamin B₁ deficiency in the nourishment of the mothers. After a gen-
erous supply of Vitamin B₁ had been instituted by the authorities, the infant mortality dropped from 45 to 9% within a year (Bray).

One of the earliest known phenomenon of Vitamin B₁ deficiency in a young animal is inhibition of growth. The slow growth of American school children of the poorer classes and their reduced weight was traced without dissent to an insufficient supply of Vitamin B₁ (Morgan-Barry, Harris). Indeed by adding a Vitamin B₁ concentrate of grain to their diet, the growth of healthy normally nourished American children could be raised 3-4 times the expected value during the period of maintenance of such addition (Sommerfeldt). A disease of childhood the Swift Fehr vegetative neurosis, acrodynia or pink disease, the etiology of which is not quite clear, presents an avitaminosis B₁ developing upon the base of a peculiar disposition and complicated by infectious processes. By giving yeast or Vitamin B₁ concentrates of grain germ it is favorably influenced, indeed at times clinically cured (Nesbit, McClendon, Maldon-Massot). The disease appears in widely varying forms, besides signs of pure Vitamin B₁ deficiency (anorexia, paresthesias, gastrointestinal disturbance) symptoms are seen that similize pellagra or lepra (physic changes, exanthemata, trophic ulcerations and mutilations) which make it probable that there exists at the same time besides a Vitamin B₁ deficiency one of B₂ as well. This agrees with the observation of Györgyi who treated acrodynia with fresh liver.

(d) Gynecology. The marked rise of Vitamin B₁ requirement during the pregnant state is the cause of the development of light forms of Vitamin B₁ deficiency at this time. This may be the rule in tropical countries. Practically all the gravid natives in southern India are sick with beriberi (Balfour-Tolpade). Among the special forms of avitaminosis B₁ to be considered in the pregnant woman is the polynueritis of gravidity. It is improved by yeast and diets rich in Vitamin B₁; it may be cured as Plass reports by injections of crystalline Vitamin B₁. It is recommended to proceed prophylactically and at the incidence of vomiting, which is the exciting factor of polynueritis, to prevent it by administration of yeast (Plass-Mengert) or Vitamin B₁. The hyperemesis gravidarum may be not only the cause of vitamin deficiency, but also the sequence of a deficiency of Vitamin B₁, as is easily conceivable. Strauss and McDonald were able to cure several cases of vomiting of pregnancy by large doses of yeast. It has furthermore, been proven that the tendency to abort in India (Wills et al) but also in America (Maurer-Tsai) is a consequence of Vitamin B₁ deficiency. It is to be desired that in Europe likewise the necessity of an abundant supply of this vitamin for the prophylaxis of abortion may be regarded more seriously. The milk is increased in nursing mothers by a diet rich in Vitamin B₁ (Tarr-McNeile).

(e) In Other Fields of Medicine. In rats dental caries is produced by the withdrawal of Vitamin B₁. Food rich in Vitamin B₁ prevents acid reaction upon enamel (Kellogg-Eddy). Upon regeneration of bone and formation of callus, Vitamin B₁ has a favorable effect, the nature of which is still unknown (Lauber). An essential anti-infectious activity is not possessed
by Vitamin B₁ (Lauber). The well-known curative effect of yeast in furunculosis is probably not contingent upon its Vitamin B₁ content.

ADDENDUM

When this section upon Vitamin B₁ was completed, there appeared the work of Vorhaus, Williams, and Watermann (Journal of the American Medical Association, 105, 1580, 1935) in which all of the experiences of therapy with crystalline Vitamine B₁ were brought up to date. Further indications for the clinical use of Vitamin B₁ have since been developed in the neurological field. Treatment of post diphtheritic paralysis with injections of Betaxin (daily 2 cc.) was successful within three weeks. In amotrophic lateral sclerosis with prolonged treatment with Vitamin B₁ (15 injections of Betaxin, 2 cc. 3 day intervals) the paresis, speech and deglutition disturbances and the muscular weakness were improved. In multiple sclerosis the spastic stiffness of the legs were diminished (Betaxin 2 cc. a day, 12 days). Neumann Muench. med. Wschr., II, 1959, 1935. The therapy of Funicular Myelosis of Neumann and Thaddea (Vitamin B₁ administration for a long time) has been confirmed. In Herpes zoster (Kühnau two cases) injections of Vitamin B₁ (3-5 times each 1 cc. Vitamin B₁ Merck) had pronounced analgesic effect.
Vitamin B₁ Content of Foodstuff

In γ per 100 gm. fresh weight
(1 γ equals 0.001 mg.)

<table>
<thead>
<tr>
<th>Foodstuff</th>
<th>Vitamin B<sub>1</sub> Content (γ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef raw</td>
<td>90*</td>
</tr>
<tr>
<td>Mutton raw</td>
<td>110</td>
</tr>
<tr>
<td>Veal cooked</td>
<td>90</td>
</tr>
<tr>
<td>Beef liver cooked</td>
<td>270</td>
</tr>
<tr>
<td>Mutton kidney raw</td>
<td>340</td>
</tr>
<tr>
<td>Roast mutton</td>
<td>90</td>
</tr>
<tr>
<td>Chicken fried</td>
<td>70</td>
</tr>
<tr>
<td>Pork roast</td>
<td>580</td>
</tr>
<tr>
<td>Ham cooked</td>
<td>400</td>
</tr>
<tr>
<td>Pork brain raw</td>
<td>110</td>
</tr>
<tr>
<td>Pork kidney raw</td>
<td>610</td>
</tr>
<tr>
<td>Codfish raw</td>
<td>70</td>
</tr>
<tr>
<td>White fish</td>
<td>55*</td>
</tr>
<tr>
<td>Halibut fried</td>
<td>110</td>
</tr>
<tr>
<td>Sardines canned</td>
<td>55*</td>
</tr>
<tr>
<td>Shrimp cooked</td>
<td>55*</td>
</tr>
<tr>
<td>Cow's milk</td>
<td>40</td>
</tr>
<tr>
<td>Cheese Gorgonzola</td>
<td>55</td>
</tr>
<tr>
<td>Cheese Cheddar</td>
<td>0</td>
</tr>
<tr>
<td>Cheese Cheshire</td>
<td>55*</td>
</tr>
<tr>
<td>Egg yolk cooked</td>
<td>250</td>
</tr>
<tr>
<td>Egg white cooked</td>
<td>trace</td>
</tr>
<tr>
<td>Beans dried</td>
<td>220*</td>
</tr>
<tr>
<td>Red beets cooked</td>
<td>125</td>
</tr>
<tr>
<td>Savoy cabbage raw</td>
<td>110-145</td>
</tr>
<tr>
<td>Brussels sprouts raw</td>
<td>110</td>
</tr>
<tr>
<td>Celery raw</td>
<td>trace</td>
</tr>
<tr>
<td>Cauliflower raw</td>
<td>200</td>
</tr>
<tr>
<td>Cauliflower cooked</td>
<td>55</td>
</tr>
<tr>
<td>Cucumber</td>
<td>55*</td>
</tr>
<tr>
<td>Lentils raw</td>
<td>380</td>
</tr>
<tr>
<td>Head lettuce</td>
<td>160</td>
</tr>
<tr>
<td>Mushrooms raw</td>
<td>90</td>
</tr>
<tr>
<td>Onions raw</td>
<td>70*</td>
</tr>
<tr>
<td>Preserved pods</td>
<td>220*</td>
</tr>
<tr>
<td>Potatoes raw</td>
<td>70*</td>
</tr>
<tr>
<td>Potatoes cooked</td>
<td>55</td>
</tr>
<tr>
<td>Radishes</td>
<td>110</td>
</tr>
<tr>
<td>Rhubarb raw</td>
<td>0</td>
</tr>
<tr>
<td>Yellow beets raw</td>
<td>70</td>
</tr>
<tr>
<td>Spinach raw</td>
<td>125</td>
</tr>
<tr>
<td>Yellow beets cooked</td>
<td>trace</td>
</tr>
<tr>
<td>Watercress</td>
<td>110</td>
</tr>
<tr>
<td>Apples</td>
<td>70*</td>
</tr>
<tr>
<td>Banana</td>
<td>90</td>
</tr>
<tr>
<td>Dates</td>
<td>55*</td>
</tr>
<tr>
<td>Figs, dried</td>
<td>180</td>
</tr>
<tr>
<td>Grapes without skin</td>
<td>trace</td>
</tr>
<tr>
<td>Grapefruit</td>
<td>70</td>
</tr>
<tr>
<td>Oranges</td>
<td>70*</td>
</tr>
<tr>
<td>Pears</td>
<td>55*</td>
</tr>
<tr>
<td>Plums</td>
<td>70</td>
</tr>
<tr>
<td>Prunes dried</td>
<td>160</td>
</tr>
<tr>
<td>Raisins</td>
<td>135</td>
</tr>
<tr>
<td>Mandarinines</td>
<td>70</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>70</td>
</tr>
<tr>
<td>Almonds</td>
<td>140*</td>
</tr>
<tr>
<td>Chestnuts</td>
<td>160</td>
</tr>
<tr>
<td>Hazel nuts</td>
<td>860</td>
</tr>
<tr>
<td>Walnuts</td>
<td>270</td>
</tr>
<tr>
<td>Coffee berry ground</td>
<td>250*</td>
</tr>
<tr>
<td>Cocoa powdered</td>
<td>0</td>
</tr>
<tr>
<td>Moor beets raw</td>
<td>110</td>
</tr>
<tr>
<td>Whole wheat</td>
<td>415-610</td>
</tr>
<tr>
<td>Wheat germ</td>
<td>1060-3375</td>
</tr>
<tr>
<td>Wheat bran</td>
<td>235*</td>
</tr>
<tr>
<td>Oatmeal</td>
<td>555</td>
</tr>
<tr>
<td>Rice bran</td>
<td>1010-1370</td>
</tr>
<tr>
<td>Rye germs</td>
<td>1350</td>
</tr>
<tr>
<td>Barley germs</td>
<td>2500</td>
</tr>
<tr>
<td>Corn germs</td>
<td>830*</td>
</tr>
<tr>
<td>Brewers yeast dry</td>
<td>1100-4150</td>
</tr>
</tbody>
</table>

* Value uncertain, error more than 50%.

The values of this table are calculated on the basis of the equation of 1 International unit = 1.8 γ crystalline Vitamin B₁ base.
THE VITAMIN B GROUP

BIBLIOGRAPHY FOR VITAMIN B

Barletta, Rass. ital. d'ottalm 1, 210, 1932.
Bergel, D. m. Wschr., 1643, 1936.
Bloxsom, American Journal of Diseases of Children, 37, 1161, 1929.
Böhm, Psych.-neurol. Wschr., 418, 1936.
Boshamer, M. m. Wschr., 2045, 1935.
Bremner, Neurologentagung, Frankfurt a. M., 22.8.36.
Carmichael, Stern, Brain 54, 189, 1931.
Clément, Presse Méd., 1420, 1932.
Dennett, Journal of the American Medical Association 92, 769, 1929.
Douthwaite, British Medical Journal, 935 (Nr. 3949), 1936.
D. Drigalski, Arch. f. Verdaunungskrkh., 57, 1, 1935.
Dupouy, Courtois, Encephale 25, 301, 1930.
Fetscher, Fortschr. Ther., 633, 1936.
Fischer, Schweiz. med. Wschr., 749, 1933.
Fletcher, Journal of the American Medical Association 101, 1264, 1933.
Gachgens, M. m. Wschr., Nr. 18, 1936.
Garamvölgyi, Különnyomat a Népegészségügy, 1936.
Gildea, Kattwinkel, Castle, New England Journal of Medicine, 202, 523, 1930.
Grünig, Mitt. Lebensmittelunters., 22, 52, 1931.
Haas, Arch. Pediatri. 46, 467, 1929.
Harris, British Medical Journal, II, 231 (Wachstum), 1933.
Hesse, M. m. Wschr., 356, 1936.
Hofer v. Lobenstein, M. m. Wschr., 310, 1936.
Howes, Vivier, American Journal of Pathology 12, 689, 1936.
THE VITAMINS AND THEIR CLINICAL APPLICATION

Jolliffe and Joffe, American Journal of Medical Science, 191, 515, 1936.
Kellogg, Eddy, Dental Cosmos, 74, 334, 1932.
Koch, Mündl. Mittteilung
Kühnau, J., D. m. Wschr., 392, 1937.
Kühnau, W., M. m. Wschr., im Erscheinen, 1937.
Labbé, Nepveux, Gringoire, Bull. Acad. méd., 109, 689, 1933.
Labbé, Nepveux, Gringoire, Soc. Biol. 113, 152, 1933.
Lajos, Biochem. Z. 280, 284, 1936.
Larimore, Journal of the American Medical Association 90, 841, 1928.
Lasch, M. m. Wschr., 1930, 1936.
Lauber, Vgl. Bruns' Beitr., 63, 158, 1933.
Leak, Lancet I, 867, 1936.
Löhr, Arch. exp. Path. 180, 344, 1936.
Maurer, Tsai, Illinois Medical Journal 30, 61, 1932.
Neumann, M. m. Wschr., 1959, 1935.
Nonne, D. m. Wschr., 166, 1907.
Perkins, Journal of Nervous and Mental Diseases, 83, 505, 1936.
Primangeli, Policlinico, sez. prat., 1250, 1934.
Reyher, Arch. Kinderheilk., 76, 215, 1925.
Reyher, Arch. Kinderheilk., 77, 114, 162.
Reyher, Arch. Kinderheilk., 55, 84, 1928.
Ribadeau-Dumas, Mathieu, Presse Méd., Nr. 10, 1931.
Rowlands, Browning, Lancet I, 180, 1928.
Ruschke, D. m. Wschr., 181, 1936.
Sainton, Progrès méd., 60, 2260, 1933.
Schauf, M. m. Wschr., 1504, 1936.
Schönbrunner, D. m. Wschr., 257, 1937.
Shastid, American Journal Ophthalm. 12, 903, 1929.
THE VITAMIN B GROUP

Stahler, M. m. Wschr., 327, 1937.
Stepp, M. m. Wschr., 1307, 1935.
Stepp, Schroeder, M. m. Wschr., 763, 1936.
Strauss, MacDonald, Journal of the American Medical Association, 100, 1230, 1933.
Stucky, Rose, American Journal Phys., 1, 89, 1929.
Sure, Thatcher, Arch. Path., 16, 809, 1933.
Theobald, Lancet 1, 834, 1936.
Thomas, American Journal of Disease and Nutrition 2, 557, 1935.
Vorhaus, Williams, Waterman, American Journal of Digestive Diseases and Nutrition, 2, 541 (Diabetes), 1935.
Widenbauer, Klin. Wschr., 608 (Chorea), 1935.
Wyllie, Stern, Arch. Dis. Childh. 6, 137, 1931.
Yoshio, Bruns' Beitr., 146, 621, 1929.

VITAMIN B₂ COMPLEX

History and Definition. In the early days of vitamin research Vitamin B was considered uniform; only beriberi-preventing and growth-stimulating properties were ascribed to it. American vitamin investigators (Seidell, Smith-Hendrick) in 1926 showed that the growth factor of the so-called Vitamin B was in reality the result of the coactivity of two chemically different and water-soluble diet factors. The one, heat and alkali resistant, alcohol-insoluble, proved clearly distinct from the other, identical with the antineuritic Vitamin B₁. About the same time Goldberger showed that the heat-stable yeast factor was not restricted to stimulation of growth. By feeding a diet of only the B₁ fraction of the B group he could produce in rats a disease closely resembling human pellagra, usually associated with a macrocytic anemia. Since then the anti-
neuritic Vitamin B₁ has been differentiated from Vitamin B₂, pellagra-preventing or (incorrectly, since other vitamins also have growth effects) as growth vitamins. A blood-regenerating action was ascribed to this vitamin also. Soon, however, it became evident that it was possible to produce pellagra in rats without inhibition of growth (Sure-Smith), or the latter without the concomitant pellagra (Sherman-Sandels), or finally pellagra without anemia (Guha), so that since 1931 the conception of a uniform Vitamin B₂ could not be maintained. On the other hand close relationships of the then hypothetical fractional factors of the Vitamin B₂ complex and their almost common coexistence, could not be denied. For this reason the fractional factors have been continuously thrown together of late. Since the growth factor at one time and the pellagra-preventive at another time were designated as Vitamin B₂, it was more difficult to clarify the situation. Our knowledge of the Vitamin B₂ problem may be precisely put as follows.

Vitamin B₂ consists of at least three (probably five) chemically and physiologically distinguishable components, which, however, to accomplish optimally their physiological function, must be administered together to man, so that there exists between them a biological and perhaps also a chemical correlation. From the labors of Chick-Copping-Edgar and Györgyi (1935) it is evident that each factor unit exercises its specific effect, though to a lesser extent, when given alone, but that its full activity is realized only when the other factors are embodied at the same time, so that one might think of the reciprocal activation as a catalysis. The underlying processes are hazy; only one thing is certain—that Vitamin B₂ complex represents a functional unit. Györgyi's proposal (at the present the best solution) is to designate the growth-stimulating component of the complex in a narrower sense as Vitamin B₂, and the pellagra-preventive as Vitamin B₆, while the anemia-preventive has no identifying letter so far. From the functional uniformity of the Vitamin B₂ complex and from the usually simultaneous occurrence of its components in nature, it follows that symptoms of deficiency, as a result of a lack of supply of one factor unit alone, does not happen in man and that manifestations of insufficient supply of the Vitamin B₂ complex may not with certainty be attributed to single components of the complex. The discussion of the clinical symptoms of B₂-complex avitaminosis and the resulting indications for a therapeutic application of Vitamin B₂ complex will be included in the description of the components.

Introduction. 1. The growth-factor (Vitamin B₂ in a narrower sense—Lactoflavin). The production in pure form and the reconnoitering of the chemical nature of the growth-factor units is one of the greatest successes that the biologically oriented chemical research may boast of lately. Though at the end of 1932 little more was known than the mere existence of the vitamin, its isolation, the recognition of its constitution, and its synthesis were successfully established in the following two years. The fruitful investigations of Vitamin B₂, in which German students decisively participated, began with the observation that all growth-effecting prepara-
tions obtained from organs, egg white or milk, showed a yellow color and a yellow-green fluorescence and the dyeing intensity ran parallel to the magnitude of the incitation of growth. Because this observation pointed to possible connections of growth effect and dyeing character, several groups of workers affirmed that the yellow-green fluorescing, water-soluble, dyestuff was widely present in nature.

They contained nitrogen, it was found, and were designated as Lyochromes (Ellinger-Koschara) or Flavins (Kühn-Györgyi-Wagner-Jauregg). The most important of this group of dyes proved to be lactoflavin, which was obtained from whey, yeast, egg white and liver (therefore also called ovo- and hepatoflavin) and identified with the vitamin of growth B_2.

Chemistry. Lactoflavin has the formula $C_{17}H_{20}N_4O_6$; it forms needle-like yellow crystals, has a melting point of 280 degrees centigrade, is easily soluble in water (slightly in alcohol), is insoluble in chloroform and is in alkaline solution optically active ($\alpha_{20}^\mathrm{D} = -114^\circ$ in n/20 NaOH). Its spectrum shows in visible light one band, in the ultraviolet three bands (445, 372, 269, 225 $\mu\mu$), its chemical constitution is a 6, 7 Dimethyl—9 (1-d-ribityl) isoalloxazin of a formula as follows:

![Chemical Structure of Lactoflavin](image)
Besides the lactoflavin, other flavins, such as the 7-Monomethyl-ribityl-isalloxazin (Euler-Malmberg), and the 6, 7-Dimethyl-arabityl-isalloxazin (Györgyi), also possess vitamin activity though in a lesser degree. There are several substances of Vitamin B₂ character. The synthesis of lactoflavin was accomplished almost simultaneously by Kühn and Karrer in 1935.

By means of strong reducing agents Lactoflavin is changed to a colorless leucoderivative which in the air is reoxidized by itself to the vitamin, thus forming a redox system upon which its specific biological effect depends. Radiation with visible and ultraviolet light destroys the vitamin by splitting up the hydrocarbon chain. In alkaline solution lumiflavin is formed, which, contrary to lactoflavin, is soluble in chloroform (Formula II Kühn). In neutral and acid solution the colorless leucochrome containing the ring system of Alloxazin (Formula III Karrer) appears. Both substances have
lost their vitamin activity. The lumiflavin fluoresces yellow-green, the
lumichrome blue. Such blue fluorescing substances are widely distributed
in the animal and vegetable worlds (especially in the retina, corpus luteum
and in yeast). The photochemical catabolism of Vitamin B\textsubscript{2} also plays a
role in the organism. Vitamin B\textsubscript{2} is taken in with the nutriment not only
as free lactoflavin but also (as in spinach) in a form combined with
albumen as a phosphoric acid ester of lactoflavin (Theorell). This flavin-
albumen combination may be formed by a partial synthesis in the animal
from free flavin. The real Vitamin B\textsubscript{2} is not the free lactoflavin, but the
lactoflavin phosphoric acid mentioned, which is formed in the intestine by
esterification of the lactoflavin contained in the food. If this esterification
in young rats is stopped by poisoning them with iodoacetic acid, there
occurs cessation of growth which may not be reestablished by additions
of lactoflavin, but may be by that of lactoflavin phosphoric acid.

\textbf{Determination}. Detection of the Vitamin B\textsubscript{2} content of organs may be
done by biological methods as follows. Young rats having stopped growing
from four weeks of Vitamin B\textsubscript{2}-free feeding, receive additions of the sub-
stance to be examined daily in equal quantities. A unit comprises that dose,
which by daily administration for 30 days, effects an increase of weight of
40 gm. Besides this curative method there is a prophylactic one that may
be employed for the rat-growth test. Usually a Vitamin B\textsubscript{2}-free diet is
given which must include Vitamin B\textsubscript{1} concentrates containing at the same
time Vitamin B\textsubscript{4} and yeast, yielding Vitamin B\textsubscript{6}. One rat unit corresponds
to 8-10\textmu g of crystalline lactoflavin. The conversion of a rat unit to propor-
tions of weight of lactoflavin offers difficulties, as one rat unit is already
contained in 0.1 gm. of dry yeast (Roscoe). This fact may be explained
in that the lactoflavin of natural products like yeast, is associated with
substances which increase the growth effect in the organism three to five
times. Since lactoflavin has been obtained in pure form, chemical methods
are being employed increasingly for the determination of the Vitamin B\textsubscript{2}
content. They are, however, to be used with certain precaution, because
they also detect biologically inert flavins and flavin derivatives. The chemi-
cal determination proceeds as follows. The solution to be examined is
rendered alkaline, radiated, and after acidification is extracted with chloro-
form, and then the dyeing intensity of the extract is ascertained by means
of a scale photometer (Kühn). The yellow-green fluorescence may also be
directly estimated photometrically. A separation of the free flavin from
that bound to egg white is possible by dialysis.

\textbf{Occurrence}. The great biological importance of Vitamin B\textsubscript{2} is evi-
denced by the fact that the lowest forms of life, bacteria and yeast, possess
the ability to synthesize flavin (butyric acid bacteria contain, for example,
13.6 mg. % in the dry residue). Vitamin B\textsubscript{2} occurs in every cell of plants
and animals. Unsprouted seeds are generally poor in lactoflavin, the pea
is an exception. Within a few days after budding a manifold increase of
flavin content ensues. (Euler-Dahl). Particularly potent sources of Vita-
m\textsubscript{min} B\textsubscript{2} are yeast, egg white, liver, kidney, heart muscle of mammals, and
liver extracts like Campolon and Lilly 343 (not Hepracton). In the other
mammalian organs only slight quantities are found. The following table gives a survey of Vitamin B₂ (lactoflavin) contained in various foodstuffs. It is evident from this table that Vitamin B₁ and B₂ do not occur together, as is frequently accepted. Egg white, rich in Vitamin B₂, contains no Vitamin B₁, while wheat, potatoes, carrots, tomatoes, and onions are very good sources of Vitamin B₁ and have only traces of Vitamin B₂. The pellagra-preventive Vitamin B₆ has likewise a different field of distribution from that of Vitamin B₂.

VITAMIN B₂ CONTENT OF FOODSTUFFS
Vitamin Content per 100 gm. of Fresh Substance

<table>
<thead>
<tr>
<th></th>
<th>I. Biologically determined Rat Units</th>
<th>Lactoflavin</th>
<th>II. Colorimetrically determined Flavin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef liver</td>
<td>500</td>
<td>4000</td>
<td>1500–1700</td>
</tr>
<tr>
<td>Beef kidney</td>
<td>—</td>
<td>—</td>
<td>800–1600</td>
</tr>
<tr>
<td>Beef heart</td>
<td>130</td>
<td>1040</td>
<td>—</td>
</tr>
<tr>
<td>Beef muscle</td>
<td>35</td>
<td>280</td>
<td>—</td>
</tr>
<tr>
<td>Veal</td>
<td>50</td>
<td>400</td>
<td>—</td>
</tr>
<tr>
<td>Chicken</td>
<td>30–35</td>
<td>240–280</td>
<td>—</td>
</tr>
<tr>
<td>Salmon, herring, cod.</td>
<td>trace</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cod liver</td>
<td>trace</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Egg yolk</td>
<td>50</td>
<td>400</td>
<td>550</td>
</tr>
<tr>
<td>Egg white</td>
<td>35</td>
<td>280</td>
<td>450</td>
</tr>
<tr>
<td>Milk</td>
<td>10</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>Potatoes</td>
<td>5–10</td>
<td>40–80</td>
<td>10</td>
</tr>
<tr>
<td>Cabbage</td>
<td>15</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>Spinach</td>
<td>20</td>
<td>160</td>
<td>80</td>
</tr>
<tr>
<td>Carrots</td>
<td>—</td>
<td>—</td>
<td>20</td>
</tr>
<tr>
<td>Peas</td>
<td>—</td>
<td>—</td>
<td>90</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>5–10</td>
<td>40–80</td>
<td>50</td>
</tr>
<tr>
<td>Wheat</td>
<td>—</td>
<td>—</td>
<td>20</td>
</tr>
<tr>
<td>Corn</td>
<td>—</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>Barley, sprouting</td>
<td>—</td>
<td>—</td>
<td>60</td>
</tr>
<tr>
<td>Bananas, peeled</td>
<td>—</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td>Apricots, dried</td>
<td>—</td>
<td>—</td>
<td>57</td>
</tr>
<tr>
<td>Light beer</td>
<td>—</td>
<td>—</td>
<td>30</td>
</tr>
<tr>
<td>White wine</td>
<td>—</td>
<td>—</td>
<td>10</td>
</tr>
<tr>
<td>Lemon juice</td>
<td>—</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td>Honey</td>
<td>—</td>
<td>—</td>
<td>105</td>
</tr>
<tr>
<td>Malt extract Loeflunds</td>
<td>—</td>
<td>—</td>
<td>210</td>
</tr>
<tr>
<td>Cenovis yeast extract</td>
<td>—</td>
<td>—</td>
<td>4300</td>
</tr>
<tr>
<td>Dry yeast</td>
<td>—</td>
<td>—</td>
<td>1800–2100</td>
</tr>
<tr>
<td>Vitox</td>
<td>—</td>
<td>—</td>
<td>3300</td>
</tr>
</tbody>
</table>

N. B. Vitamin B₂ occurs in foodstuffs principally in high molecular combinations as "yellow ferment" (in spinach 80-90%, in egg white, yolk and peas 90-95%, in sprouting grain 60-70% of the entire albumin-bound flavin [von Euler & co-workers]). Only milk contains, almost exclusively, free flavin.

Requirement of Man. The absolute necessity of the lactoflavin for nor-
mal growth has so far only been determined for the rat (Györgyi) and the chick (Elvehjem-Koehn). For the pigeon the Vitamin-B₂ complex is not vital. Furthermore it is uncertain whether the lactoflavin fulfills in man the functions of a growth-vitamin, or if it is not needed as a base for the yellow ferment. In man a genuine Avitaminosis B₂ is not known. Therefore, the daily human requirement cannot be stated with accuracy. We do not know how large a proportion of the Vitamin-B₂ complex effect may be attributed to lactoflavin. It cannot be considerable, since fish, which is a specifically valuable food in the treatment of human pellagra—a Vitamin B₂ complex avitaminosis—contains practically no Vitamin B₂. The organism needs the lactoflavin on the other hand for the construction of the yellow ferment, to regulate the cell metabolism. If we, therefore, estimate the human need of Vitamin-B₂ complex with Jung to be 150 rat units we still cannot draw conclusions as to the lactoflavin requirement for man. The conversion of the 150 rat units into lactoflavin might furnish suggestions for the magnitude of the requirement, but for reasons mentioned previously it meets with difficulties. Figures result which lie between 0.3 and 1.5 mg. of lactoflavin a day according to the kind of food and its content of substances activating lactoflavin. One may not go very far wrong by estimating the daily human minimum need of Vitamin B₂ to be 1 mg. The Vitamin B₂ optimum lies, however (as with Vitamin B₁) far above the minimum (Sherman, Sherman-Ellis)—about 2 to 4 mg. During lactation the need of Vitamin B₂ is increased (Bomskov). The calculations of Schroeder and Wittmann show that the Vitamin B₂ content of human food and of special diets is generally sufficient and will meet even increased demands. For man the danger of a Vitamin B₂ avitaminosis is therefore slight.

Behavior of Vitamin B₂ in the Organism. The lactoflavin taken up with the food and that released in case of a colloidal compound is absorbed in the small intestine, and while still in the mucosa is esterized with phosphoric acid (Rudy). Assimilated in the animal cell this ester is moored to a colloidal carrier substance of protein nature ready in the organism, and thus, as yellow ferment, stored in the organs (Theorell et al). The flavin of the organs is present almost exclusively (80-90%) as a high molecular compound (Euler-Adler). Solely in one place in the body, the pigment epithelium of the retina of mammals and fishes, Vitamin B₂ occurs in very considerable quantities in a free and dialysable form. The retinas of many fishes belong to the richest known tissues in Vitamin B₂ (content of growth-effective flavin of fresh cod retina is 50 mg. %). Since the retinas of albinotic animals contain abundant flavin, it is probable that Vitamin B₂ participates in the organ of vision (Euler).

The obligated combination of Vitamin B₂ and albumen in other organs explains why their content of Vitamin B₂ depends in proportion but lightly upon the supply of albumen. Since the flavin part of the yellow ferment comprises only 45% of the entire ferment molecule, the normal liver alone must contain in its dry residue 1% of the yellow ferment. If this value may be but little increased by a tenfold supply of Vitamin B₂, it is apparent that the storing capacity of the liver tissue is limited by the quantity of the available colloidal carrier (Kühn-Kalt-Schmidt-Wagner-Jauregg). It is
affirmed on the other hand that Vitamin B\textsubscript{2} may be stored in the organism up to a certain degree (von Drigalski). Conversely the content of Vitamin B\textsubscript{2} diminishes but little even on a Vitamin B\textsubscript{2}-free diet continued for a long time, death in the avitaminotic B\textsubscript{2} animals supervening at a time when their organs (liver chiefly) still hold considerable quantities of Vitamin B\textsubscript{2} (Kühn and co-workers, Vivanco). Feeding avitaminotic B\textsubscript{2} animals with additional lactoflavin incites immediate growth, before the depleted vitamin depots of the organs are refilled. Within the organism Vitamin B\textsubscript{2} is probably subject to a partial catabolism setting in at the carbohydrate side chain and leading to flavin carbon acids.

Vitamin B\textsubscript{2} after thus splitting off its albumen portion is eliminated in free form by the urine and the feces (Vivanco). The export by the feces is about double that of the urine. The normal human urine contains about 1.5 mg. of flavin in a liter. The urinary flavin is indeed not a pure Vitamin B\textsubscript{2}, but to a great extent consists of a catabolic product of the vitamin, the aquoflavin (Koschara). The elimination of flavin, however, stops in Vitamin B\textsubscript{2}-free fed animals with cessation of their growth, while it continues even then in the feces. Vitamin B\textsubscript{2} passes also into the milk and the spinal fluid (von Drigalski).

Mode of Action and Physiological Importance. The growth effect of Vitamin B\textsubscript{2} seems to depend essentially upon the fact that it is a base of the yellow ferment (Warburg-Christian) and indispensable for the activation of the energizing processes of oxidation in the cell. It has been designated as the “methylene blue of the cell” in view of the frequently employed faculty of this dyestuff in experiments to act as an oxidizing catalyst. Like methylene blue lactoflavin may be reduced in biological systems to a leucobase and reoxidized by the oxygen of the air. From this property arises the power of transferring hydrogen, which the free flavin possesses only in a very restricted measure. However, esterified with phosphoric acid and albumen bound as yellow ferment (flavin enzyme), aided by the hydrogen-transferring ferment, it can oxidize a series of combustible products of metabolism (malic acid, citric acid, ethyl alcohol, hexophosphoric acid, and under certain conditions grape sugar) by transporting the hydrogen to suitable acceptors. Furthermore it may transfer the oxygen of the air directly to these substances, an action of which the free flavin is never capable. The yellow ferment is therefore, a genuine respiratory ferment, but insensitive to cyanic acid. The fact that the yellow ferment acts as a go-between in sugar metabolism is perhaps explained by the observation that lactoflavin injections lower the blood sugar of diabetics (Stepp).

However, the free lactoflavin, not egg-white bound, nor the phosphor-ester, plays an important role in the process of vision. Under the influence of light the flavin of the retina is changed to a “primary, activated photo-body” of unknown structure and this reaction seems to incite the excitability of the optic nerve. The primary photo-body, however, is very sensitive, and decomposes from oxygen deficiency forming deuteroleucoflavin. The retinal oxygen impedes decomposition reforming the original flavin out of the photo-body (Theorell). Also in twilight vision the flavin
of the eye performs a special function, changing the short wave light to long
wave light by means of its fluorescence (Euler).

Phenomena of Deficiency. During animal experiments (rats and
chickens) the avitaminosis B₃ appears in the cessation of growth, excepting
the non-specific dermatitis in Vitamin B₂ and Vitamin B₆-free fed rats,
which is occasionally cured only with lactoflavin (Chick-Copping-Edgar).
Lately Györgyi has shown in rats fed only with Vitamins B₁ and B₈ of all
the B factors, there develops a peculiar skin affection, differing from the
B₈ and H avitaminoses (formation of yellowish-white scales dispersed over
the entire body and later loss of hair), which is cured by additions of B₂.

BIBLIOGRAPHY OF VITAMIN B₂ COMPLEX

Györgyi, Klin. Wschr., 1241, 1933.
Kisch, Wien. m. Wschr., 194, 1937.
Stepp, M. m. Wschr., 1307, 1935.
Verzar, Laszt, Pflügers Arch., 237, 476, 483, 1936
Widenbauer, M. m. Wschr., 1071, 1935.

VITAMIN B₆

Introduction. The pellagra-preventive (Vitamin B₆, P-P factor.) When
rats are fed a diet containing, of the Vitamin B group, only the antineuritic
Vitamin B₁ there develops a clinical syndrome consisting of cessation of
growth and a symmetrical localized dermatitis of the fore and hind paws,
ears, nose and the angles of the mouth with reddening, scaling and swell-
ing, which shows a certain similarity to human pellagra, and is called by
its discoverer—Goldberger—rat pellagra. A more accurate analysis of
this symptom complex by Chick-Copping-Edgar and Györgyi showed that
for its cure and prevention administration of two vitamins was necessary,
the growth-promoting Vitamin B₁ and the dermatitis-preventing B₆. For
reasons not well known these vitamins exert their efficacy only when
supplied simultaneously. However, by feeding a Vitamin B₆-free diet and
adding a generous supply of Vitamin B₂ a symptom complex has been
successfully produced in which the skin phenomena are outstanding, so
that the symptoms of the Vitamin B₆ avitaminosis may be studied. Its
similarity with human pellagra seems to justify the conclusion that the
Vitamin B₆ is indispensable for man, also.

Properties. Vitamin B₆ has not been developed in pure form; its
chemical nature is unknown. Like Vitamin B₂ it is probably a dye-stuff
THE VITAMINS AND THEIR CLINICAL APPLICATION

(Györgyi). It is water-soluble, very heat and alkali stable and dialyzes through cellophane. By radiation with visible and ultraviolet light it is destroyed (Györgyi, Hogan-Richardson).

Determination. The determination of the Vitamin B₆ content in nutrient material is done as follows:

For 6 to 8 weeks young rats receive a diet containing of the B vitamins, only Vitamin B₁ with additions of the material to be analyzed, with the appearance of the skin changes usually accompanied by inhibition of growth. One rat unit of lactoflavin is added each day. That quantity of the daily fed test material which cures the dermatitis and, as usually happens, at the same time re-establishes growth, is defined as a rat unit (Györgyi).

Occurrence. The following table gives in rat units the content of Vitamin B₆ in some foods. It is evident that Vitamin B₂ and Vitamin B₆ contents do not run parallel. Though beef liver is the richest food, both in Vitamin B₂ and Vitamin B₆, egg white has much Vitamin B₂ but no Vitamin B₆, while fish of every kind is a very good source for Vitamin B₆, but practically free of Vitamin B₂. That is a matter of importance also for human nutrition, since fish is one of the best curative means to treat human pellagra. B₂ occurs in yeast, egg-yolk, lettuce, spinach (Chick-Copping) and rice bran (Lepkovski-Jukes). Cornstarch, wheat germ, and corn and linseed oils cure rat pellagra. However, the identity of the factor contained in these materials, ether and alcohol-soluble, with Vitamin B₆, is not assured (Hogan, Richardson).

| Vitamin B₆ Content of Food in Rat Units (Györgyi) per 100 gm. of fresh substance |
|---------------------------------|---------------------------------|
| Beef liver | 330 |
| Beef heart | 130 |
| Veal | 180 |
| Beef muscle | 100 |
| Chicken | 100 |
| Egg white | 0 |
| Milk | 10 |
| Salmon, Cod, Herring | 200 |
| Cod liver | 50 |
| Wheat germ oil | 500 |

Requirement of Man. The Vitamin B₆ requirement of man is not known. It is assumed to be commensurate with Vitamin B₂ and to amount to 150 rat units.

Behavior in the Organism. Only this much is known—that it cannot be demonstrated in the blood, but that it is eliminated in the urine and milk (Holmer). The crystalline lens is Vitamin B₆ free.

Physiological Importance. The P-P factor enters into the sulphur metabolism in a manner still unknown (Sullivan-Dawson). In human pellagra the sulphur of the fingernails is reduced (Payne-Perlzweig). The disease is improved or even cured by injection of thiosulphate (Sabry). In rat pellagra the glutathione of the liver and blood is diminished. Feeding cysteine and glutathione alone, without additions of the Vitamin B₆ complex, effects growth and restores the coat of hair (Itter, Orent and McCollum). Whether these underlying processes concern a specific disturbance
of the sulphur metabolism under a lack of Vitamin B₆ (Perhaps because of interference with the function of the adrenal, by which the sulphur economy is principally influenced, cf. pellagra adrenal changes) or an insufficient assimilation of cysteine, has not been determined. Considering their propriety there exist dim relations between the pellagra-preventive factor and iron economy. A disease wholly simulating pellagra may in rats be produced by iron deficiency alone (Bliss-Thomason). The cure of human pellagra may be materially accelerated by large doses of iron (Biggam-Ghalionngui). It may be argued that Vitamin B₆ aids constructing metabolic catalysts containing sulphur and iron and that Vitamin B₈, as well as sulphur and iron are necessary to prevent pellagra, but on this subject very little is known. Whether the P-P factor, as has been often surmised, plays a similar role in the proteid metabolism as Vitamin B₁ does in the carbohydrate metabolism, is uncertain so far. Probably Vitamin H and not Vitamin B₆ is the factor which enters into the protein metabolism as a regulator.

Phenomena of Vitamin B₆ Deficiency. The symptom complex of rat pellagra, avitaminosis, described above occurs sometimes in a more non-specific dermatitis with loss of hair about the head and the eyes in spectacle form. The similarity of human and rat pellagra is still more marked by the fact that gastrointestinal disturbances (diarrheas, intestinal hemorrhages, colitis and stomatitis and glossitis) and affections of the central nervous system (vacuolization of the anterior horn cells) are observed. Yet these symptoms may not be those of a true lack of Vitamin B₆, but equally due to a deficiency of other divisional factors of the Vitamin B₂ complex. In the Vitamin B₆-free fed chicks pellagra symptoms develop simulating those of the rat (Kline, et al). It is of importance to note that another etiologically entirely different disease, the egg-white dermatitis (probably a form of avitaminosis H) produces clinical symptoms in the chick just like pellagra (Lease-Parsons, Norris-Ringrose, Gorter). This has led to great confusion in the Vitamin literature, the more since Vitamin H deficiency and toxic action of egg white play a role in human pellagra as well. In the avitaminosis of the Vitamin B₂ complex in the dog, the skin signs recede, while gastrointestinal symptoms and the lesions of the central nervous system dominate the clinical syndrome (Zimmermann-Bureck). There occur degenerations of the medullary sheaths in the posterior columns and occasionally also in the anterior and posterior roots. This avitaminosis B₂ of the dog proceeding with purely central nervous symptoms, where apparently the lack of Vitamin B₆ stands out prominently, differs clearly from the so-called dog pellagra also called black tongue.

In this (dog sickness of Stuttgart), a disease of dogs in Europe and in America which may appear spontaneously or be experimentally produced, affections of the gastrointestinal tract—inflamations, ulcerations, and pigmentation of tongue, mouth and oesophagus—are prominent, above all besides diarrheas and anemia; central nervous symptoms may also occur, but they are not marked. Though the seasonal frequency and geographical distribution and anatomical substratum of human pellagra and black tongue are exactly alike
(Wheeler), the latter cannot be considered as a full analogon of human pellagra, because its main symptom is the hyperchromatic anemia, which in pellagra of man is seen only occasionally. That points toward an insufficient supply of the anemia factor as being of decided importance for the origin of black tongue. To cure it a divisional factor of the Vitamin B2 complex, unknown so far, is required, the lack of which is probably involved in the intestinal symptoms (Rhoads-Miller). Black tongue is a matter, therefore, of a complex avitaminosis arising from a lack of the anemia factor, of Vitamin B6 and likely carotin (Underhill-Mendel), besides lack of another partial factor of the Vitamin B2 complex in the feed.

While this article was in the press Birch, Györgyi and Harris suggested that the Vitamin (P-P factor) was different from the Vitamin B6, but probably identical with the black-tongue-preventing factor. That would make the previous assumption that Vitamin B6 was of importance for man and that the rat pellagra was an analogon for the human untenable. Further investigations must clarify the situation. The assumption of Birch and co-workers rests upon the observation that the distribution in the food-stuffs of Vitamin B6 and P-P factor varies, thus the P-P-free, pellagra-producing corn contains an abundance of B6. We, therefore, supplement our former statements with another table of qualitative data showing the occurrence of the P-P factors especially significant for man.

The P-P Factor Content of Various Foods.

<table>
<thead>
<tr>
<th>High</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry yeast</td>
<td>Milk</td>
</tr>
<tr>
<td>Hog liver</td>
<td>Cod Fish</td>
</tr>
<tr>
<td>Liver Extract (Lilly 343)</td>
<td>Wheat Germs</td>
</tr>
<tr>
<td>Salmon</td>
<td>Salmon</td>
</tr>
<tr>
<td>Fresh Beef</td>
<td>Fresh Beef</td>
</tr>
<tr>
<td>Chicken</td>
<td>Chicken</td>
</tr>
<tr>
<td>Low</td>
<td>None</td>
</tr>
<tr>
<td>Caseine</td>
<td>Oatmeal</td>
</tr>
<tr>
<td>Butter</td>
<td>Cornmeal</td>
</tr>
<tr>
<td>Whole Wheat Grains</td>
<td>Rice</td>
</tr>
<tr>
<td></td>
<td>Peas</td>
</tr>
<tr>
<td></td>
<td>Tomato Juice</td>
</tr>
<tr>
<td></td>
<td>Pork</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY FOR VITAMIN B6

Ballner, Österr. Sanitätswesen, Nr. 17—20, 1910.
Birch, Györgyi, Harris, Biochemical Journal 29, 2930, 1935.
THE VITAMIN B GROUP

MISCELLANEOUS GROUPS OF VITAMIN B COMPLEX

Introduction. The anemia factor ("Extrinsic Factor", Castle, Haemogen Reimann). After Guha and Mapson had proven for the first time that the concomitant hyperchromatic anemia of the experimental rat pellagra was caused by the lack of a specific vitamin in the diet, Castle and Strauss ascertained in 1932 that also in human pathology the anti-anemic vitamin played a large role in so far as all kinds of hyperchromatic anemia occurring in man rested upon the loss of function of the anemia factor and that its working mechanism differed from that of all other vitamins. The discovery of Castle, decisive for the entire research of anemia, that not the anemia factor as such, but only after coupling with the hormone-like, endogenous factor, secreted from the gastric wall, unfolded its activity in the organism, and that it was stored in the liver, resulted in two possibilities for the development of hyperchromatic anemias:

1. The lack of the endogenous factor with sufficient supply of the anemia factor;
2. Insufficient offering of the anemia factor with production maintained of the endogenous principle of the gastric juice.

The first modus leads to the development of genuine pernicious anemia—hyperchromatic. The second of greatest interest in this discussion, (usually combined with the lack of all other factors of the Vitamin B₂ complex), is followed by the development of megalocytic, yeast-curable anemias, which appear under various conditions either alone or more frequently with the other symptoms of deficiency of the Vitamin B₂ complex. To enter into the physiology of the anti-pernicious anemia principle resulting from coupling of the gastric juice and anemia factors, and the coordinate deficiency disease, the pernicious anemia, would transgress the limits of this discussion. Proceeding we are occupied only with the anemia factor as such, and the manifestations resulting from the lack of it in the food (under normal production of gastric juice).

From the fact that only such materials as are rich in Vitamin B₂ acquire pernicious anemia efficacy by incubation with gastric juice, Castle and Strauss have concluded that the anemia factor and Vitamin B₂ are identical. Since the complex character of this vitamin has been ascertained, the question of identity has been repeatedly investigated and it has been proven that the anemia factor occurring in various foods and the growth and pella-
gra-active part of the Vitamin B₂ complex are of like origin (egg white, Wills-Naish; yeast, Diehl-Kühnau; liver, Block-Farqhar). However, the combined occurrence of the anemia factors and the other Vitamin B₂ components and the very frequent combination of hyperchromatic anemias and other signs of lack of Vitamin B₂ complex prove that the anemia factor is closely related to the other factors of the Vitamin B₂ complex.

Chemistry. The chemical character of the anemia factor is not known. It is ascertained that it is soluble in water, 80% alcohol and acetone, and that it is very heat-stable even with alkaline reaction (Reimann).

Determination. The determination of the anemia factor is impossible directly, but only with the aid of Castle's original experiment, by conversion into the anti-pernicious anemia principle. The testing proceeds best with a man ill of pernicious anemia by ascertaining that quantity which given parenterally evokes after 3 to 9 days a reticulocytic crisis of certain proportion, to be obtained from the erythrocytic count at the start of the investigation after the formula of Riddle. Attempts made so far to evaluate the anti-pernicious anemia principle in animal experiments have met with little success, because the experimental megalocytic anemias of the pigeon, chicken and rat used for the purpose are not complete analoga of the human pernicious anemia. Lately the healthy guinea pig which reacts upon administration of anti-pernicious anemia material with a reticulocytosis has been recommended as a test object (Jacobson). All these tests suffer from the fact that the reticulocytic crisis does not represent a specific reaction of the anti-pernicious anemia principle. Other test reactions proposed for this reason (for example, methemoglobin test of Duesberg) have, however, not been confirmed. Assured quantitative data of content in foodstuffs and for the need of man of anemia factor cannot, therefore, be given at the present time.

Occurrence. The anemia factor is found chiefly in yeast, muscle and liver, in the latter in much greater amount than the finished anti-pernicious anemia material (Reimann). The therapeutically employed liver extracts contain it, also, though apparently not so copiously as whole liver. It is found furthermore in chicken eggs (especially in the egg white), malt extracts, barley, wheat germs, wheat grit and rice bran (Singer, Rhoads-Miller, Ungley, Castle). If the content of the anemia factor is put at 100, that of liver is 100-200, of muscle 5 and of eggs 2.5 (Reimann-Fritsch, Bomskov).

Statements about the occurrence of the anemia factor in other organs (kidney, spleen) are unreliable. The anemia factor contrary to the anti-pernicious anemia factor is absent in yeast, musculature and chicken eggs. The successes occasionally observed from yeast treatment in pernicious anemia (Goodall, Ungley) may perhaps be based upon the condition of the gastric juice still containing some endogenous factor in these cases.

Behavior in the Organism. The anemia factor taken in with the food is coupled in the human stomach and duodenum with the gastric juice
principle as the anti-anemia factor and as such stored in the liver. Since liver and muscle contain abundant free anemia factor, it may be assumed that it is also absorbed without having been tied to the endogenous gastric juice principle. Besides there exists the possibility (Reimann) that it serves in the liver as a stored inactive form of the anti-pernicious anemia element, regenerated from it by auto-liver ferments and respectively, if need be, reconverted to it (analogy: glucose-glycogen economy in the liver). At any rate the coupling may also happen parenterally (Singer). In the form of anti-pernicious anemia principle the anemia factor is eliminated in the urine (Leiner); in the cow secreted in the milk (Rominger), and in the human supplied with abundant anti-pernicious anemia element (Mach) it enters by way of the placenta into the fetal organism, where it is stored in the liver (Berglund). In the hog as in man, the binding of the anemia factor occurs in the gastrointestinal tract. Therefore, if the hog is fed on a diet containing no anemia factor, a symptom-complex may be established which likens human sprue or pernicious anemia to a great extent. Indeed it may come to a disappearance of the endogenous principle in the gastric juice (Miller-Rhoads). The dog, however, does not produce any endogenous factor at all (Singer, Richter-Ivey-Meyer) and converts the anemia factor directly to hematopoiesis. In dogs there is, therefore no analogon to pernicious anemia, and the anemia of “Black tongue” is a true avitaminosis of the anemia factor (not influenced, for example, by parenteral injections of liver extract). In the guinea pig on the other hand the withdrawal of the anemia factor results in loss of weight and rapid death, while the anemia recedes in the background (Miller-Rhoads).

Phenomena of Lack of Anemia Factor. The only function that may be ascribed to the anemia factor with certainty is its influence upon blood formation. It is the mother substance of the “ripening element” formed by the action of the gastric juice principle which transmutes the embryonal to the definite type of hematopoiesis. According to the theory generally accepted today the sequences resulting from the lack of this maturing element in the organism, or its precursor in the food, consist in a reversion of the erythropoiesis to the embryonal modus, in an effusion of short-lived megalocytes of inferior value biologically, in a compensatory increase of the erythropoietic apparatus and its activity (substitution of the yellow for the red bone marrow, overproduction of short-lived cells), and finally in an intensified demand upon the blood destroying mechanisms. It comes furthermore to a bone marrow barrage, manifest by a diminution of the blood reticulocytes in spite of increased bone marrow activity, though normally the reticulocyte count runs parallel to the activity of the bone marrow. If the anemia factor or (as in pernicious anemia) the finished anti-pernicious anemia element is administered, the bone marrow barrage is removed and a discharge of reticulocytes proceeds, which, however, lasts only a short time, since the simultaneously increased bone marrow activity, and with it the production of reticulocytes, is reduced to a physiological measure. Hand in hand with this process the quality of erythrocytic production is normalized and the increased blood catabolism, gone astray, is again led into normal channels.
Very little is known of the effect of the anemia factor or anti-pernicious anemia element upon the leucocytes. It is known only that the lack of the anemia factor in the nutriment impedes granulopoiesis and may be to such an extent that a clinical syndrome is developed of the type of agranulocytosis.

BIBLIOGRAPHY FOR VITAMIN B COMPLEX
(ANEMIA FACTOR)

Castle, Science 82, 159, 1935.
Dedichen, ebd. Suppl. 78, 250, 1936.
Roth, Klin. W., 1431, 1936.

More divisional factors of the Vitamin B\textsubscript{2} complex (Sprue and Cataract-preventing Factor). With advancing recognition of the nature of the diseases arising from insufficient intake of Vitamin B\textsubscript{2} complex it becomes more and more obvious that in the production of the physiological activity of this complex, there are still participating, besides the three vitamins described, two others, of which our knowledge is almost nil. One of them is a factor needed for normal intestinal function. The lack of it leads to inflammations of the mucosae of the mouth and intestine, and to diarrheas and fatty stools, seeming to be essentially concerned in the incidence of the clinical syndrome of sprue. The remarkably frequent coincidence of sprue and hyperchromatic anemia, and the curative action of liver and liver extract in sprue have been the reasons why the anemia and sprue-preventing factors have been considered identical up to very lately. That that is not the case recent investigations have shown, since in the usual commercial process of enrichment of anti-pernicious anemia principle of liver extracts, the sprue-preventing vitamin is partially lost (Rhoads-Miller). It occurs in yeast. Whether it has other functions to perform in the body, or what its chemical properties are, is not known. Of the fifth divisional factor of the Vitamin B\textsubscript{2} complex, the cataract-preventive, probably also of import to man, little more than its existence is known. Deficient supply of Vitamin B\textsubscript{2} complex in rats causes, in a varying high percentage corresponding to the composition of the main diet, a cloudiness of the lens and inflammations of the cornea (Day-Langston-O’Brien, Sen-Das-Guha, Guida-Yudkin, von Drigalski). These eye symptoms are not relieved with Vitamin A. That there is involved here a lack of a specific diet factor Bourne and Pyke have been able to show. The richer the food is in carbohydrates the greater the need of Vitamin B\textsubscript{1} as well as the cataract-preventing factor. Cataract may be produced in experimental animals solely by feeding large quantities of lactose or galactose without reducing the supply of vitamins (Mitchell). The disturbance of the lens metabolism causing cataract formation con-
sists in loss of reduction power of the lens substance (Ray-Györgyi-Harris). This disappearance of reducing power may be prevented by additional feeding of egg white and liver, but not by additions of Vitamin B_2 and B_6; these foodstuffs contain, therefore, the anti-cataract factor. Since the power of reduction of the lens is dependent upon its content of ascorbic acid, there ensues interesting relationships between the Vitamin B_2 complex and Vitamin C.

BIBLIOGRAPHY FOR VITAMIN B COMPLEX
(SPRUE AND CATARACT-PREVENTING FACTOR)

Wills, Clutterbuck, Evans, Lancet, I, 311, 1937.

CLINICAL DISCUSSION

1. Symptoms of deficient supply of the Vitamin B_2 complex in Man.

The close mutual relations and the common occurrence of the components of the Vitamin B_2 complex render it impossible to arrange the symptoms of the single factors of the Vitamin B_2 complex in man separately, which forces a general discussion of all of them. On the other hand the components of the Vitamin B_2 complex are not contained in all foodstuffs in the same quantitative relationship. An equalized lack of all divisional factors cannot be expected therefore from a Vitamin B_2 complex poor nutrition. It is found that in relation to the feeding, one of them may be lacking to a greater extent than the others. In addition the need of the single factors varies according to individual conditions. It follows that the symptoms of the Vitamin B_2 complex deficiency may combine in a most varying manner and intensity and appear in the form of several different clinical syndromes, which, however, are joined together by flowing transitions. To understand the incidence of these clinical pictures and to adjudge the scope of indications of the therapy of the Vitamin B_2 complex, it is necessary to recognize the specific symptoms of the Vitamin B_2 complex deficiency diseases, many of which individually appear as signs of a Vitamin B_2 complex hypovitaminosis.

(a) The gastrointestinal symptoms arising in the course of the various forms of B_2 complex avitaminosis merit special interest for the reason that they may not only be the sequence but also the cause of a lack of Vitamin-B_2 complex. It is known that pellagra and megalocytic anemias develop with disease of the gastrointestinal tract, particularly when they are associated with continued diarrhea. This applies also to rat sprue (Rominger), which may be cured without being specially supplied with vitamin only relieving the diarrhea by feeding toasted bread. Even with a sufficient supply of vitamin the diarrhea in these cases inhibits the
absorption of Vitamin B₂ complex and is thus the cause of the development
of the avitaminosis. Because of the fact that the lack of Vitamin B₂ in
itself may early incite gastrointestinal disorders, there may arise under
certain circumstances a vicious cycle endangering life. In a single case
it is often impossible to decide whether a gastrointestinal affection is
cause or consequence of simultaneous Vitamin B₂ complex avitaminosis.
For this purpose vitamin therapy (giving parenterally liver extract in
high dosage) is combined with symptomatic treatment of the gastrointes-
tinal disturbance. A manifestation of chronic Vitamin B₂ deficiency is the
more or less complete loss of hydrochloric acid in the stomach, which was
observed, for example, in almost 100% of all cases of pellagra (King), but
was also observed as a sign of a suboptimal intake of Vitamin B₂ by country
folk of northern Sweden (Schiödt, Odin). Experimentally achylia may be
produced in swine by feeding rations short of Vitamin B₂ complex (Miller-
Rhoads). In rats multiple hemorrhages of the intestine are characteristic
symptoms. Likewise in the genesis of human intestinal bleeding and
ulceration, deficit of B₂ complex takes an active part (Schiödt). In pellagra
bloody stools are frequently observed. The Vitamin B₂ complex is indis-
pensable for the normal function of the mucosa of the colon. Failing
supply or failing absorption of the Vitamin B₂ complex are the chief
causes of the incidence of chronic ulcerative colitis roentgenologically
demonstrated which very frequently develops secondarily because of a
resorptive disorder (Mackie). The exceedingly frequent combination of
ulcerative colitis with other typical symptoms of lack of Vitamin B₂ com-
plex (stomatitis, glossitis, pellagrous skin changes, anemia and cessation
of growth in children) points to the etiological importance of the defi-
ciency of the Vitamin B₂ complex for the incidence of colon pathology.
By intramuscular or intavenous injections of liver extracts, which simul-
taneously remove the other deficiency symptoms, the colonic lesion is
favorably and with astonishing rapidity influenced. Because of failure
of resorption, liver and yeast given perorally are frequently unsuccessful.
Colitis ulcerosa, however, is only a specific phenomenon of the intestinal
affection resulting from a deficiency of the Vitamin B₂ complex which
may manifest itself in profuse and continued diarrheas and disturbances
of fat resorption. The stools in such cases are fermenting strongly, vesicu-
lar, yellow and mostly fatty (steatorrhea). These fatty diarrheas are
classical symptoms of a Vitamin B₂ deficiency and, as such, constituents
of the clinical syndromes of sprue, celiac, and goat milk-anemia. They
are often seen in pellagra (Neusser, Morawitz-Mancke, Nauck). In dogs
and swine fatty diarrheas may be produced experimentally by withdrawal
of the Vitamin B₂ complex (Miller-Rhoads). Probably many of the fatty
diarrheas, diagnosed as purely pancreatogenic result in reality from a
deficiency of Vitamin B₂ complex and must be treated accordingly.

(b) Among the diseases in the genesis of which the lack of the Vita-
min B₂ complex is active, there appear almost regularly changes of the
tongue and of the mucosa of the mouth. An early symptom of Vitamin
B₂ complex avitaminosis in man, is the hypertrophic inflammation of the
anterior one-third of the tongue (strawberry tongue) which frequently pro-
ceeds, as the disease progresses, to a diffuse glossitis with aphthous, at times gangrenous, ulcerations finally ending up in a smooth atrophy. Such tongue changes as well as individual lesions appear (Ness-Thayson) as in company of ulcerative colitis (Mackie), sprue, pellagra and pernicious anemia. (The question however in the latter case as to how much is due to lack of Vitamin B₂ complex has not quite been answered.) In exactly the same form as in man on a Vitamin B₂ complex-free diet (Findlay, Hutter-Middleton-Steenbock, Rhoads-Miller) they may be obtained experimentally in dogs and rats. These investigators have given to the dog disease, which must be considered an analogon of human pellagra, sprue and pernicious anemia, the name "Black tongue". Glossitis in man following a long continued diet inadequate in all of the B vitamins subsides rapidly when B₂ complex preparations of yeast or liver are given (Elsom, Miller-Rhoads). Almost always with the glossitis simultaneous inflammations of the mucosa of the mouth appear. They are localized stomatitides with aphthae, pigmentation and salivation, spreading diffusely and leading to necroses and ulcerations. The glossitis frequently seen with colitis, sprue, and pellagra may likewise experimentally be produced with nutriment free of the Vitamin B₂ complex. In its gravest form it makes its appearance in dogs as the so-called "acute black tongue". It exhibits a pronounced, by the synchronous loss of neutrophils, yet more marked similarity with the mouth changes of human agranulocytosis (Miller-Rhoads). Grave stomatitides in man, though they may not occur combined with other symptoms of a lack of Vitamin B₂ complex, for example, scarlet fever, are favorably influenced with peroral doses of yeast or with local applications of yeast solution (Widenbauer).

(c) To fix the skin changes characteristic of a Vitamin B₂ complex avitaminosis is not a simple matter since pellagra is a complex deficiency disease and since with the other Vitamin B₂ complex deficiencies the skin is involved only occasionally. However, it is safe to state that the pellagra erythema (appearing also in colitis ulcerosa), a strictly symmetrical localized dermatitis, developing in its course pigmentation, atrophies and follicular hyperkeratoses, is a true symptom of a Vitamin B₂ complex deficiency. In the absence of other skin changes, loss of hair and nail defects point to a latent lack of Vitamin B₂ complex, which is easily relieved by a respectively reversed diet. The symmetric disposition of the dermatitis is also a characteristic sign of rat pellagra, an experimental Vitamin B₂ complex disease.

(d) What applies to the skin changes is similar to that of the nervous symptoms of the Vitamin B₂ complex avitaminosis, which stand out in the foreground of the clinical picture in the dog, but arise in man only under certain conditions. Phenomena of irritation, spasms and increased reflexes characterizing the second stage of pellagra in the central nervous system, may develop independently of other pellagra symptoms and are not then recognized as manifestations of an insufficient Vitamin B₂ supply, especially when they are not marked. The increased reflexes arising from deficient provision of the B vitamins disappear promptly upon additions
of Vitamin B₂ complex (Elsom). Muscular weakness, general hyperirritability, sleeplessness and depression are signs of a latent lack of Vitamin B₂ (Rud) or of an incipient pellagra (Spies) and react well upon administration of yeast. Another peculiar group of symptoms of chronic Vitamin B₂ deficiency consist in vasomotor-trophic changes of hands and feet (acrocyanosis). They are not only seen in pellagra but also in other diseases, in the genesis of which a lack of the Vitamin B₂ complex is active (for example acrodynia and lepra). The fact that a chronic acrocyanosis with trophic changes develops sometimes in sequence of gastrointestinal disorders (Stokvis, Palma, Heymans, Cheinisse) point likewise to the fundamental deficit of the Vitamin B₂ complex. Equally the necrotic ulcers of the mucosa of the mouth in pellagra and black tongue are of a trophic nature (Lillie).

(e) Megalocytic hyperchromatic anemias or anemias presenting transitions to hyperchromatic anemias are observed in all human diseases resulting from deficient Vitamin B₂ complex supply (in sprue, celiaca, goat-milk-anemia, ulcerative colitis, pregnancy complications in the tropics and frequently in pellagra). At the same time there is seen a more or less complete transformation of the yellow bone marrow to the red—the active marrow. The hyperchromatic deficiency anemias react promptly upon yeast and liver administration in sufficient dosage. Anemias of the pernicious type may be experimentally produced by withdrawal of the Vitamin B₂ complex or of the anemia factor in dogs, swine and rats. Vitamin B₂ complex deficiency anemias (like pernicious anemia) usually run along with high rate of diminution of neutrophilic leucocytes at times, which indicates that the Vitamin B₂ complex is also of importance for the granulopoiesis. Such a leucopenia with relative lymphocytosis is frequently observed in pellagra (Wasserman deems it a characteristic pellagra symptom) and more often still in sprue. In extreme cases it may come to aleukia-like syndromes.

2. The diseases of Vitamin B₂ Complex Deficiency in Man

(a) Pellagra. We have positive assurance today that pellagra is not a true Vitamin B₂ complex avitaminosis, but a complex deficiency disease, in the genesis of which there are besides the lack of the Vitamin B₂ complex also perhaps the lack of participating Vitamin H and of vital amino acids. Since Vitamin H is required for the normal evaluation of egg white, and because of its lack in the diet certain kinds of nutrient albumen act as toxins (dermatitis-producing), the old corn theory, for important reasons lately revived by Chick, according to which, among corn-eating folks pellagra is due to a toxic effect of spoiled corn or its proteins respectively, might well fit in with the conception of a Vitamin H deficiency. Though in Italy, the classical pellagra country, the disease has almost entirely disappeared, it is still responsible in the southern states of the United States and in Roumania for thousands of lives lost yearly (1933 in the U. S., 4000; in Roumania 2800 deaths). Pellagra is widely spread in Jugoslavia and in southern Russia, and it is of interest that its sporadic appearance is not at all rare in Germany, Austria, Switzerland, Scan-
dinavia and England. Staehelin and F. Meyer justly stress that light and atypical cases of pellagra are overlooked and not recognized. This applies particularly to cases in which the skin lesions are continuously or intermittently absent (pellagra sine pellagra). The determination of other symptoms of lack of Vitamin B₂ complex leads here to a proper diagnosis. The recognition, especially of the widely spread latent pellagra (Rud), evidenced in sleeplessness, conditions of irritability, adynamia, loss of weight and hair and nail defects, may frequently be arrived at only by giving successfully a diet rich in Vitamin B₂ complex. In accord with our knowledge today two forms of pellagra must be distinguished. First, the primary resulting immediately from qualitatively insufficient nutrition, presenting a true deficiency disease, and then the secondary, in which the supply of vitamins of the B₂ complex is satisfactory, but the absorption of them is stopped by gastrointestinal disease. As a complication pellagra is seen in colitis, cancer of the intestinal tract, intestinal tuberculosis, ileus, dysentery, biliary diseases, ulcers of the digestive tract and following gastrointestinal operations (Turner, Urbach, Meyer, Thannhauser, Chotzen, Simpson, Morawitz-Mancke). These distinctions carry therapeutic importance, because the primary form is readily improved by supplying nutriment rich in the Vitamin B₂ complex, while a successful treatment of secondary pellagra is only possible by parenterally administered preparations containing the Vitamin B₂ complex.

When Flinker declined recently to divide pellagra into a primary and secondary form, he disregarded the fact that gastrointestinal phenomena may well be cause and sequence of a Vitamin B₂ deficiency.

It is remarkable, and for therapeutical purposes significant, that the cases observed in Mid-Europe are almost always of secondary nature. Pellagra of alcoholics occurring in Germany, Switzerland and in the United States are secondary, because of the digestive disorders associated with anorexia resulting from alcoholism (Aykroid, Zimmermann-Cohen-Gildea). A specific form of secondary pellagra proceeding with bone atrophies and disturbances of the endocrine and adrenal function is the "symptom-complex of Freiburg" (Thannhauser, Froboese-Thoma). It is still uncertain whether other adrenal changes seen in pellagra are also sequences of the lack of Vitamin B₂.

The strongest support of the vitamin deficiency theory generally recognized today is the fact that the administration of the Vitamin B₂ complex in proper dosage given for a sufficient length of time, brings recovery from whatsoever form of pellagra. Since pure preparations of Vitamin B₂ complex, and especially the P-P factor are not available on the market, a generous dietary supply of the B₂ complex is necessary for the purpose, and that in the form of liver, fish, milk, eggs, yeast, peas, tomatoes and cabbage. If the need of the Vitamin B₂ complex is urgent, yeast extracts rich in the Vitamin B₂ complex (Vitex, Marmite, Vigex) per os, or liver extracts (Campolon, Lilly 343, not Hepracton!) parenterally, may be given in addition. The application of liver extract, successfully employed by
Spies and Flinker, is specifically indicated in the presence of serious gastrointestinal symptoms. In latent or incipient pellagra it suffices to give besides fish and eggs, 3 times a day 1 teaspoonful of brewer's yeast, in lighter cases with moderate skin and mouth symptoms one or two tablespoonfuls of dry yeast or liver extract or extract of wheat germs, best in iced milk, according to the severity of the case up to four times daily (Spies, Ruffin-Smith, Ramsdell-Magness) are prescribed. In case the gastrointestinal disorders are considerable or if the disease has progressed much, intravenous or intramuscular injections of liver extract (Campolon) are made 5 times daily. Occasionally even in secondary pellagra one succeeds without injections. Thus Simpson cured pellagra following gastric resection with peroral doses of marmite and a Vitamin B_2 complex preparation of egg yolk. With pellagra of alcoholics the Vitamin B_2 complex therapy is also successfully pursued in the manner described above (Zimmermann-Cohen-Gildea, Spies-de Wolf, Meyer).

It is emphasized by the contestants of the vitamin deficiency theory that yeast per os is often ineffective (Flinker). That is explained, however, by the fact that the gastrointestinal disturbances associated frequently with pellagra impede the absorption of the yeast vitamins. Therefore, a parenteral therapy of the Vitamin B_2 complex is necessary in such cases. Also the fact of lactoflavin injections not influencing pellagra does not militate against the vitamin deficiency theory, because it is not Vitamin B_2, as known, but Vitamin B_6 that represents the real pellagra preventive.

The best pellagra prophylaxis applied in the U.S. and in Italy from governmental initiative, consists in propaganda urging nourishment rich in the Vitamin B_2 complex, as named above. The use of this prophylaxis so successful in these respective countries would reduce the incidence of pellagra likewise in mid and northern Europe, but most decidedly in the closed institutions and asylums (Mterna).

(b) Sprue. Flowing transitions join pellagra and sprue. The latter differs from the former in the gastrointestinal manifestations with steatorrhea of a severe order, the hyperchromatic anemia dominating the clinical syndrome, while the skin and nervous symptoms recede in the background. Stomatitis and glossitis are usually more marked than in pellagra. Though sprue is chiefly a tropical disease, it does occur, not infrequently, in our latitudes and especially in Scandinavia (Hess-Thaysen, Engel, Thorfinn, Duenner-Hirschfeld-Geraldy). Just why the lack of the vitamin B_2 complex is expressed once as pellagra and then as sprue cannot be answered precisely as yet. Besides the constitutional element, the fact that the inferior valence of the nutriment inciting pellagra and sprue does not extend over the same divisional factors of the Vitamin B_2 complex seems to be decisive. In addition sprue also is not a single deficiency disease, but a mixed one of the Vitamin B_2 complex and an avitaminosis C (Slot). It is still more difficult in sprue than in pellagra to decide whether the gastrointestinal phenomena heading the clinical syndrome are of primary or secondary nature. Though the real sprue symptoms, steatorrhea and anemia, usually develop in association with pre-existing gastrointestinal-
tinal disease, the Vitamin B₂ complex therapy brings about regularly in both human and also rat sprue recovery of the intestinal lesion (Rhoads-Miller). Therefore, an eternal vicious circle must be expected in sprue also.

Sprue not only shows relationships to pellagra but to pernicious anemia, and is often conceived of as a connecting link between the two diseases. In many cases of tropical sprue the factor of Castle is lacking in the gastric juice and then the otherwise successful yeast treatment fails. On the other hand, with us, in cases of pernicious anemia there are seen occasionally sprue-like fatty diarrheas. The clinical picture of "black-tongue" producible by Vitamin B₂-complex-poor feeding in dogs, unites in itself the symptoms of sprue, pernicious anemia and pellagra, while the rat sprue (Rominger) is more analogous to the goat-milk anemia. Manifestations of bone atrophy, frequent in sprue, and osteoporosis with decreased blood calcium and symptoms of tetany, are possibly due to disturbances of calcium absorption. In the "Freiburger symptom complex", a species of pellagra, the bones are calcium deficient and susceptible to spontaneous fractures. Supply of Vitamin B₂ complex reverses calcium metabolism by normalizing gastrointestinal function. In the presence of signs of decalcification in the bone, it would be well to prescribe not only calcium and viosterol, but also provide nutrition rich in the Vitamin B₂ complex.

The character of sprue as an avitaminosis reflects the unfailing success of the treatment with the Vitamin B₂ complex. Besides prescribing a mixed diet it suffices to give in light and moderate cases Vitamin B₂ complex concentrates in the form of Vitox or Marmite (Castle-Rhoads). In severe fatty diarrheas peroral yeast often fails. In such event intramuscular or intravenous injections of liver extract (Campolon, hepatrat pro infusione) are made several times daily with success even in the gravest of cases.

(c) Celiac Disease. (Heubner-Herter intestinal Infantilism, Idiopathic Steatorrhea) is in our latitudes a sickness of children, a species of sprue, arising secondary to a specific disease of the large intestine. As early as 1925 Reyher perceived it to be an avitaminosis. It exhibits the same symptoms as sprue and is merely differentiated by cessation of growth, and inclination to multiple overdistensions of the gut forming numerous fluid levels. Occasionally such conditions appear in adults (Wendt, Lister, Bennet, et al). Hess-Thaysen, however, maintain that celiac and sprue are the same disease. Celiac disease is likewise improved by the use of preparations of yeast containing the Vitamin B₂ complex (Vitox, Marmite, 10-15 gm. per day or Levurinose, 1 teaspoon 3 times a day), or liver (Fancony, Rhomer, Vaughan-Hunter, Widenbauer). Györgyi recommends giving Vitamin B₂ complex in the form of a soup of 120-200 gm. ground or cooked beef heart (or besides 50-150 gm. heart muscle digested with papain for one-half hour at 50 degrees.)

(d) Goat-Milk-Anemia holds, as conceived of today, a unique position in that it unites the symptoms of an isolated deficiency of the anemia factor, as well as of a deficiency of iron. The high B₂ and B₆ content of goat-milk argues against an avitaminosis Vitamin B₂ complex being concerned
in goat milk anemia. However, by feeding goat milk to young rats a clinical syndrome may be produced corresponding to sprue (Rominger) which points to a kinship of goat milk anemia to other forms of a Vitamin B₂ complex avitaminosis. Indeed goat milk anemia in the child is improved by food containing all of the components of the Vitamin B₂ complex, for example, liver; (50 gm. of raw calf's liver and 1 ampule of Compolon daily Györgyi), yeast (Cenovis extract 20-30 gm. a day), beet root extract (Aron), and wheat grits and cow's milk; that holds good also in rats (Rominger). Complete recovery, however, results only when substances containing Vitamin B₂ complex (or anemia factors) are combined with preparations of iron (Györgyi, Haase, Wolff-van Eekelen, Parsons-Hickman). The great success of the liver treatment depends partially perhaps upon the heavy iron content of the liver preparation.

(e) Tropical B₂ Complex Avitaminosis. In China, Indochina and Western Africa, apparently also in Europe (London abortive case of Goodwin) occurs a Vitamin B₂ complex deficiency disease, sharply distinguished from pellagra, yet seemingly related with symptoms as follows: very painful oozing crust forming eczemas of the angles of the mouth and of the scrotum, nervous disorders (ataxia, paraesthesias, increased reflexes and disturbances of sensation) and retrobulbar optic neuritis with atrophy of the nerve (progressive diminution of vision) (Landor-Pallister). This symptom arises in natives living on a one-sided, limited diet, especially in prisons and schools. By giving 15 gm. Marmite daily or 100 gm. brewer's yeast or 250 gm. cooked liver, recovery is obtained unless the disease has progressed too far. The character of the nervous symptoms infers a participation of a Vitamin B₁ deficit. Hyperchromatic anemias and diarrheas are absent.

3. Other Spheres of Therapeutic Application of Vitamin B₂ Complex

(a) Lepra. As regards some symptoms there exists a certain similarity between pellagra and lepra. Numerous investigations have shown that the development of lepra is favored by insufficient supply of the Vitamin B₂ complex. The skin and intestinal symptoms of experimental rat lepra are increased by lack of the B vitamins (especially Vitamin B₂ complex) and their incubation period is shortened (Lamb, Badger-Sebrell). The food of lepra patients is almost constantly of inferior value in Vitamin B₂ complex (Basu). Yeast improves symptoms of lepra in many cases. In British Sudan the natives are the more resistant to lepra because of the milk they consume (Atkey); milk is well-known to be rich in the Vitamin B₂ complex, and one of the best pellagra remedies.

(b) Acrodynia (Swift-Feer Vegetative Neurosis). In this disease of childhood etiologically not quite clarified symptoms of lack of Vitamin B₁ combine with those of a Vitamin B₂ deficit. Györgyi, like Uffenheimer, points out the similarity of acrodynia and pellagra and attributes the success of liver treatment in acrodynia to the content of Vitamin B₂ complex
of the liver. The curative effect of yeast in acrodynia is governed by its abundance of Vitamin B₂ complex with Vitamin B₁.

(c) Agranulocytosis. Miller and Rhoads made the important discovery that "acute black-tongue", producible in dogs by a certain deficient diet (deficient in the Vitamin B₂ complex) likened in all particulars the human agranulocytosis (ulcerative stomatitis inclined to gangrene, extreme granulopenia and typical changes of the bone marrow). A Vitamin B₂-complex-free feeding leads also to an agranulocytosis in rats, which disappears when yeast is supplied (Day-Langston Shukers). It is possible that a lack of Vitamin B₂ complex (and specifically of the anemia factor) participates in the origin of agranulocytosis and aleukia (panmyelophthisis). A granulopenia (leucopenia with relative lymphocytosis) is present in all diseases, in the genesis of which an insufficient supply or a defective assimilation of the anemia factor is engaged, thus in sprue and in the various megalocytic anemias, pernicious anemia especially, and in pellagra very frequently (Anding-Sinain, Chotzen, Mollow, Nauch, et al). In this connection it is remarkable that sprue, pernicious anemia and both riocephalus and the goat-milk anemias may pass on to aleukia (Buettnner, Schultz). The leucopenia so often found by Wendt in chronic gastrointestinal affections likely depends therefore upon a disturbance of absorption of the anemia factor normally needed for leucopoiesis. That corresponds with the fact that agranulocytosis and aleukia develop occasionally as sequellae of chronic gastrointestinal affections, for example, following typhoid (Schultz, Blackie) or in alcoholism (Naegeli) (as has been stated, alcohol is a frequent cause of a secondary Vitamin B₂ complex avitaminosis). Supply of the anemia factor or the pernicious anemia stuff in sprue, pernicious anemia and pellagra relieves the anemia as well as the leucopenia. The action of the anemia factor improving granulopoiesis explains perhaps the effective results of liver therapy in agranulocytosis (von Bonsdorf, Fora-Sheaf-Trimmer, et al) and aleukia (Matthes et al). The treatment has to be conducted with very large doses of extract (several times daily, quantities equal to 100 gm. liver) while the toxic recurrent aleukia occurring subacutely (hypoleukia) readily reacts to small doses of Campolon. The relationships, revealed by these observations, between agranulocytosis or aleukia and the Vitamin B₂ complex avitaminosis urgently need further work and enlightenment.

(d) Keratitis and Optic Neuritis. The keratitis and cataract-preventing factor of the Vitamin B₂ complex seems to be of importance to man also. Thus in celiac disease due to lack of Vitamin B₂ complex opacities of the lens frequently occur (Bennet-Hunter-Vaughan). In the Philippines in pregnant and nursing women, lesions of the cornea have been observed, which disappeared upon supply of the Vitamin B group (not of Vitamin A) (Ayuyae). However, it is difficult to decide if such keratitides do not partially depend upon a lack of Vitamin B₁ (neuritis of the first trigeminal branch). On the other hand the retrobulbar optic neuritis is a symptom frequently associated with pellagra (Stepp-Voit, Cronin, Levine). As mentioned it is also a symptom of the tropical Vitamin B₂ complex avita-
minosis. It may be cured even if it occurs alone by supplying B vitamins (Shatid). The importance of the Vitamin B$_2$ complex for the prevention and cure of diseases of the eye does not seem to be sufficiently recognized.

(e) **Heavy Metal Intoxications.** Jacoby and Eisner affirm that an otherwise fatal uran intoxication in rabbits ends in recovery if the animals are fed generously with the Vitamin B$_2$ complex. This finding gives rise to the thought that the Vitamin B$_2$ complex may perhaps be drawn upon successfully for the treatment of human heavy metal poisoning (lead).

OTHER VITAMINS OF THE B GROUP

For the maintenance of normal health of man there are besides the vitamins B$_1$ and B$_2$ complex still other vitamins of the Vitamin B group needed. On a long continued otherwise normal diet, in which all of the B vitamins are lacking there develop in man, besides the manifestations of a deficiency of Vitamin B$_1$ and of the Vitamin B$_2$ complex, disease symptoms which do not disappear upon supply of Vitamin B$_1$ and Vitamin B$_2$ complex but only when all B vitamins are added in the form of yeast. They are, chiefly gastrointestinal symptoms (feeling of fullness, constipation, roentgenologically visible gastric atony and failing peristalsis) and further reduced sensibility and prolonged clotting time (Elsom). Which vitamins are necessary for the prevention and relief of these symptoms is not known as yet. Vitamin B$_4$, the lack of which in animals produces ataxia, disturbances of coordination and a spastic gait, is said to be of importance for man as well. Its absence in the nutriment, according to the opinion of some authors, is co-responsible for the development of beriberi, and might effect the disturbances of sensation, but that has not been confirmed. The gastrointestinal symptoms depend perhaps upon a lack of Vitamin B$_7$, which is required for the normal function of the intestinal mucosa and musculature. It appears that these little known vitamins of the B group, still supplement Vitamin B$_1$. In cases of Vitamin B$_1$ deficiency not responding upon administration of highly purified Vitamin B$_1$ preparations in a manner expected, it is recommended therefore to prescribe yeast (brewer's or dry) which contains all the vitamins of the Vitamin B group.

BIBLIOGRAPHY FOR VITAMIN B GROUP

Adie, Brain 55, 97, 1932.
Aykroyd, Nutritional Abstract Reviews, 3, 337, 1933.
Aykroyd, Krishnan, Indian Journal of Medical Research, 24, 411, 1936.
Badger, Sebrell, Public Health Reports, 50, 855, 1935.
Barre et al, Rev. neur. 542, 590, 1934.
Bennett, Hunter, Vaughan, Quarterly Journal of Medicine., N. S. 1, 600, 1932.
Boshamer, M. m. W., 2045, 1935.
THE VITAMIN B GROUP

Chick, Lancet, II, 341, 1933.
Corr, Annals of Internal Medicine, 9, 1182, 1936.
Cronin, Journal Nervous and Mental Diseases, 35, 78, 1933.
Davidson, British Medical Journal, I, 100, 1933.
Davidson, Nutritional Abstract, Reviews, 3, 901, 1934.
Elsom, Journal of Clinical Investigation, 14, 40, 1925.
Findlay, Journal of Pathology and Bacteriology, 1, 31, 353, 1928.
Goodall, Slater, Edinburgh med. Journ., N. S. 43, 368, 1936.
Hassin, Thomason. Journal of Nervous Diseases, 80, 430, 1934.
Haug, Mschr. Psych., 85, 126, 1933.
Hess-Thavsen, Non-tropical Sprue, København, 1932.
Landor, Pallister, Transactions Royal Society of Tropical Medicine, 29, 121, 1935.
Lille, Bulletin National Institute of Health, 13, 162, 1933.
Lucasch, M. Kl., 159, 1937.
Ludwig, Schweiz. m. W., 473, 1936.
MacLeod, British Medical Journal, 1, 352, 1930.
MacLester, Journal of the American Medical Association, 95, 719, 1930.
Materna, M., Kl., I, 708, 1935.
Meyer, Kl. W., 1811, 1933.
Miller, Rhoads, Proceedings of the Society of Experimental Biology, 30, 540 (Fettdiarrhoe), 1933.
Miller, Rhoads, Journal of Experimental Medicine, 61, 173, (Glossitis, Agranulozytose), 1935.
Miller, Rhoads, American Journal of Medical Science, 191, 453, (Sprue), 1936.
Parsons, Hickman, Archives of Diseases of Childhood, 8, 95, 1933.
Plum, Thomsen, Ugeskr. Laeger, 1062, 1936.
Ramsdell, Magness, American Journal of Medical Science, 185, 568, 1933.
Rhoads, Miller, Journal of Experimental Medicine, 58, 585 (Glossitis), 1933.
Rhoads, Miller, Journal of the American Medical Association 103, 387, (Sprue), 1934.
Rice, Archives of Pediatrics, 53, 626, 1936.
Rietschel, Ernährung, 1, 127, 1936.
Röming et al, Kl. W., 149, 1935.
Rud, Hosp. tid., 513, 1934.
Scott, Annals of Tropical Medicine, 12, 109, 1918.
Simpson, Quarterly Journal of Medicine, N. S., 4, 191, 1935.
Spies, de Wolf, American Journal of Medical Science, 186, 521, 1933.
Strachan, Practitioner, 59, 477, 1897.
Thannhauser, M. m. W., 291, 1933.
Waltner, Mschr. Kind., 30, 52, 1925.
Widenbauer, M. m. W., 1071, 1935.
Wills, Lancet I, 1283, 1933.
Wills, Bilimoria, Indian Journal of Medical Research, 20, 391, 1932.
Wyllie, Stern, Archives of Diseases of Childhood, 6, 137, 1931.
Zimmermann, Cohen, Gildea, Archives of Neurology, 31, 290, 1934.
CHAPTER THREE

VITAMIN C

Brief historical Introduction. The Vitamin C deficiency disease, scurvy or Scharbock, has been known for some centuries as a nutritional disorder. This early recognition has resulted from experiments made in grand style, and unintentionally, by the sea-faring folk in times long past. During protracted voyages there appeared among the crew after a certain time and with great regularity, the much-feared symptoms of scurvy, which promptly subsided when there were chances on landing to get fresh vegetables and fruit. In this connection it is astonishing to note the unerring folk instinct for picking out the very vegetable product as specifically curative, which by the most modern methods of investigation have proven to yield a high vitamin content. Thus one of the earliest reports (Cartier, 1534) dealing with the management of scurvy praised the medicinal property of fresh extract of pine leaves. As a matter of fact, during the years before the synthesis of Vitamin C was accomplished, besides other sources, pine leaves have been used in the preparation of Vitamin C on a large scale. In spite of the very old knowledge of the origin of scurvy, there was still a great deal of contention about its etiology up to a few decades ago. The view that scurvy was due to a nutritional disturbance was opposed chiefly by the theory of infection, founded particularly upon the remarkable appearance of the disease in the course of grave epidemics. This observation has been positively settled and interpreted, as will be demonstrated in the following.

From the recognition of scurvy as a disease resulting from a fault in the nutrition to the isolation or synthesis of the lacking vitamin was a long road. Only at the beginning of the century could Holst and Froehlich submit the experimental proof in guinea pigs that scurvy could be produced by withdrawal of green fodder from the ordinary food. With a limited diet of pearl barley and white bread guinea pigs succumbed to a clinical syndrome simulating human scurvy. Not all animal species, however, depend upon the provision of Vitamin C. Aside from the guinea pig it is indispensable for man and the ape.

Most all animals of our zone remain well if Vitamin C is withdrawn from their nutriment, because they are able to form the specific substance themselves in the liver. The Hungarian investigator—von Szent-Györgyi—in 1928 finally succeeded in isolating Vitamin C from the beef adrenal. Recognizing the newly discovered substance as highly important for the oxidation-reduction metabolism of the plant cell, he named it at first
hexuronic acid. Later when the identity of the acid with Vitamin C was established, the new body was called ascorbic acid. Under this term it is generally known at present. Following the discovery of its constitution by several German and English Chemists, Reichenstein finally by way of the plant sugar l-arabinose succeeded in synthesizing both the d- and l-ascorbic acid, identical with Vitamin C. To manufacture ascorbic acid today the chemical industry generally employs the synthetic method.

Chemistry. Ascorbic acid is a nominally constructed hexuronic acid derivative, a 3-ketoguloacid anhydride. The pure crystalline L-ascorbic acid (empirical formula—C₆H₈O₆) presents a fine white powder very easily soluble in water. The substance melts at 192° and in aqueous solution has a specific version $[a]_D^{20} + 24°$, in methanol $+ 50°$.

In its chemical reaction it is distinguished by its strikingly strong power of reduction. The oxidized Vitamin C, still possessing full vitamin activity, may easily be reduced to its original form by the tissues and may act catalytically by processes of oxidation. By this faculty ascorbic acid is very likely charged with an important function in the vital processes of the cell. In neutral and alkaline solution ascorbic acid is quickly destroyed by the oxygen of the air. In acid solution the rate of oxidation of the acid is considerably less.

Very remarkable and still unexplained is the fact that ascorbic acid within the tissue of the plant, for example, lemon, is much more stable than the isolated Vitamin C. Possibly this phenomenon is to be ascribed to the action of protectins. The dextrogyral form and different other chemically-related substances possess, if any, far less scurvy effect (Dal-mer). It is evident, therefore, that the vitamin effect of L-ascorbic acid is lost with even slight changes in the molecule. The l-rhamno-ascorbic acid carrying, instead of group HOCH₂ at the end, the grouping of
HOCH-CH₃, solely possesses approximately the same antiscorbutic effect as the l-ascorbic acid (Rheichstein).

Determination. The most positive method of detection of ascorbic acid is still the biological test carried out with guinea pigs. If these animals are fed a certain diet free of Vitamin C, there occurs a drop in weight usually on the 15th day, leading later to death. That daily dose is designated as the smallest Vitamin C protecting dose, which, preventing weight loss in such animals, inhibits development of scurvy in so far as the treated animals, at the death of the controls (fed with Vitamin C), are practically scurvy-free. In applying this method 0.5 mg. of ascorbic acid have the efficacy of 1.5 cc. of fresh lemon juice.

To ascertain the Vitamin C content of the various plants and fruit, the titration method, worked out by Tillman and co-workers, is usually employed by using a blue-dye-stuff, the 2-6 dichlorophenolindophenol, the dye being reduced to its leuco form. The titration test with a properly diluted solution depends likewise upon the reduction power of ascorbic acid. The chemical detection of it in animal tissues and fluids is made difficult by the fact that other reducing substances, especially sulphhydryl compounds may dissipate the titration.

Occurrence. Among the plant products having a high Vitamin C content are particularly: oranges, lemons, onions, tomatoes, hips and green paprika pods. Besides Vitamin C is abundantly found in green spruce and pine leaves. In a general way it may be said that ascorbic acid occurs in living plant tissue, i.e. in those with normal metabolism. If the metabolism of the plant has been reduced or has ceased, as in seeds, the active substance vanishes. On reawakening of cell life with the germinating seeds, it reappears in the green sprouts in rather generous quantities. Its occurrence is, however, not restricted to the world of plants. In the human and animal organism it is found in liver, spleen, kidney, and in surprisingly high concentrations in some organs with internal secretions: the adrenals (Szent-Györgyi), the hypophysis, the interstitial tissue of the testes and the corpus luteum (Giroud and co-workers). It is contained besides in especially large quantity in the vitreous, the aqueous humor and the lens (Mueller, Buschke and von Euler).

Requirement of Man. Exhaustive tests with guinea pigs have demonstrated that a daily dose of 0.25-0.5 mg. of ascorbic acid suffices to inhibit the loss of weight of the Vitamin C-free fed animals and prevents their death (Moll). However, it is only after a dose of 1.0-1.5 mg. of ascorbic acid that the pigs fail to show any histologically demonstrable changes whatsoever, for example, in the teeth.

As daily Vitamin C requirements the following quota used to be figured as average.

- Minimum for nurslings: 2.5 mg. crystalline ascorbic acid.
- Minimum for adults: 10-20 mg. crystalline ascorbic acid.

By more recent investigations these values have been proven to be too low. For healthy men the daily need of Vitamin C is about 50 mg. It has to be considered, however, that the human need of vitamin C depends...
upon diverse factors and is subject to great fluctuations. Further discussion will be continued under clinical applications of ascorbic acid. For the problem of Vitamin C requirement in man, it is of great import that (judging by animal tests) there exists in scurvy close reciprocations between the course of the disease and the vitamin supply. Even small amounts of Vitamin C suffice in clinically demonstrable symptoms of scurvy, though there are assuredly pathological changes existing in the sense of scurvy.

Comparing the daily quota of other vitamins needed it is a conspicuous fact that a very much greater dose of Vitamin C is necessary. Vitamin C is further distinguished from other vitamins in that a hyper-vitaminosis has not been reported, at least, so far.

Elimination. With an ordinary diet only very small amounts (about 10 mg. daily) of Vitamin C are excreted in the urine. On a daily supply of ascorbic acid, say 300 mg., an increasing elimination by the urine is noted day by day, reaching its height on about the 4th day after loading with the vitamin. Evidently the healthy organism becomes repleted with it and excretes the excess with the urine (Schroeder, Harris and Ray, Johnson and Zilva).

Commercial Preparations. Pure crystalline Vitamin C in tablets and in ampules of 0.025, 0.05 and 0.1 gm. are on the market. Well-known commercial preparations are: Cebione (Merck), Redoxon (Hoffmann LaRoche) and Cantan (I. G. Farben Industry). Application peroral or parenteral.

Value of Vitamin C in the Organism. In view of the high reversible power of reduction of ascorbic acid, abundantly present in the green parts of plants, attention was directed at once to a principle value of Vitamin C in the fundamental vital processes in the plant, such as respiration and fermentation. Today the function of Vitamin C in cell life is not clarified. There is evidence, however, that the vitamin fulfills a general function in the animal economy. The clinical syndrome of avitaminosis C is signified by the decline of a series of cell functions. Characteristic of scurvy are the hemorrhages resulting from inability to produce the necessary intercellular cement-substance. The well-known changes in the osseous system, due to avitaminosis C depend mainly upon the complete disorganization of the cartilage cells leading to osteoporotic pictures. Typical of scurvy are separations of the epiphysis and hemorrhages in the medullary space and around the fractures.

Pathogenically, scurvy does not present a uniform disease process, however. This is indicated by the fact that withdrawal of all water-soluble vitamins may produce scurvy in rats (Kollath).

According to experiments as well as to observations in man it appears as though beriberi and scurvy have a common base of morbidity. Slot believes that sprue which occurs in the tropics is to be regarded as a specific avitaminosis C actuated by strong light. The anemia of sprue is considered as a sign of a lack of Vitamin B₂.

Vitamin C Pharmacology. Up to the isolation of ascorbic acid our
knowledge of the Vitamin C effect was very limited, scarcely reaching beyond the well-known clinically and pathologically demonstrable manifestations of the avitaminosis C scurvy. Only when a well-defined chemical substance of the pure isolated Vitamin C was submitted could an accurate analysis be carried out. For the time being the question must be left open as to what extent the general actions of ascorbic acid combine with its antiscurvy effect. In the same way the pharmacological properties of Vitamin C do not allow an inference to the pathogenesis of scurvy.

An exact pharmacological analysis was of special interest for the reason that the other isolated vitamins had shown that their modus operandi could not be made clear in any way by the manifestations of deficiency in the respective avitaminoses. As Bürgi, working with chlorophyll, similarly could show that the vitamins, separated from their compounds, having new and unexpected physiological properties, are justified to be listed among medicaments, and indeed the most efficient known to us. This has been briefly stated before.

In determining the toxicity it has been shown that ascorbic acid in quite considerable doses either perorally or parenterally are borne without any ill effects. Following intravenous injection of relatively large quantities of ascorbic acid the blood pressure was temporarily lowered. That Vitamin C evidently plays an important role in the plant and animal economy is demonstrated by the fact that by means of ascorbic acid various ferments are activated. Thus Vitamin C is, for example, the activator of proteolytic ferments as Papain (Maschmann and Helmert), Kathepsin (von Euler, Karrer and Zehender), Arginase (Eldbacher and Leuthardt). Intravenous injections of ascorbic acid increase the activity of catalase in the blood (Jusatz). For the explanation of clinical observations respecting the process of clotting important information is submitted by Kühnau—that by the L-ascorbic acid in vitro at a pH greater than 7.4, the clotting is accelerated and that this effect of the acid is increased by traces of iron. Kühnau connects this clot-promoting activity of the acid with activation of the thrombin. The clotting effect of Vitamin C has, however, nothing to do with its vitamin character; it rather depends upon the power of reduction of the acid which is common to all, even those isomers and homologons of ascorbic acid which are ineffective antiscorbutics (Kühnau). Interesting and very likely of physiological import is the ability of ascorbic acid to raise the activity of the economy’s own substances as adrenalin, cholin and thyroxin. Specifically important is the activation of adrenalin by ascorbic acid as shown by the blood pressure as well as in the rabbit uterus (Kreitmair). In vitro the acid is capable of greatly impeding the oxidation of adrenalin in the air, readily recognized by the reddish tinge (Schroeder). It is this observation perhaps which explains the increased adrenalin effect by Vitamin C. According to investigations so far, Vitamin C seems to play a role at least in the physiology of the adrenals. Pointing that way is the hypertrophy of the adrenals in scurvy and the finding of von Euler that adrenalin injections reduce the Vitamin C content of the adrenals. Favorable reactions of
Vitamin C seen in disturbances of the pigment metabolism point also to close relationships between adrenalin and Vitamin C, which will be referred to later. In a similar manner, as with adrenalin, Vitamin C may also prevent the formation of the melanoid pigment (von Szent-Györgyi). In addition it has been discovered recently that the activity of the cortical hormone of the adrenal in Addison's Disease is increased by the administration of Vitamin C. Vitamin C, in the role of activator, does not extend by far to all of the economy's own substances or hormones. In certain cases the efficacy of ascorbic acid is bound up with normal metabolism, for example, insulin. Of not less practical import is the discovery that ascorbic acid has the power to increase the effect of essential remedies and to reduce their toxicity (von Euler). In some instances of Germanin, for example, this observation has disclosed new possibilities for treatment with this agent and has been made use of already in practice and clinics. Besides, a marked detoxication of the diphtheria toxin by ascorbic acid has been noticed (Harde and Philippe).

Because of apparent relations of Vitamin C to the blood, the effect of ascorbic acid upon blood regeneration has been thoroughly investigated. Actually it has been shown that in the blood picture of "sponin anemic" cats, the acid was capable of exerting a blood-regenerating effect, and by peroral as well as by parenteral administration a rise of the erythrocyte count and hemoglobin index was noted (Kreitmair). Ascorbic acid apparently does not possess direct general metabolic activities. The gas exchange as well as the protein, fat and mineral metabolism remain unaffected by peroral or intravenous use of ascorbic acid (Kreitmair, Stepp). As to working mechanism so far there is little enlightenment in the observation that the blood sugar sinks markedly following intravenous injections of fairly large doses of ascorbic acid (Stepp, Schroeder and Altenburger).

Reciprocations. Isolation and synthesis of the best known vitamins have afforded new perceptions of the reciprocations of the vitamins. The necessity of a vitamin equilibrium for optimal operation of the vital functions in the animal economy has been known a long time. Hyper-avitaminoses, resulting from limited feeding with large quantities of vitamins, are regarded as disturbances of correlation of vitamins. By simultaneous supply of water- and fat-soluble vitamins, an hypervitaminosis cannot be produced, though they may be given in very large quantities. The fact that the carotin and Vitamin C of plants are found together in high concentration seems to indicate relative connections between Vitamin A and Vitamin C (von Euler). Indeed in the light of recent experimentations there seems to exist an antagonism between Vitamin A and Vitamin C, because a simultaneous feeding of proper doses of ascorbic acid with an excess of Vitamin A does not allow development of an hypervitaminosis A (Wendt and Schroeder).

Clinical Applications of Vitamin C. Scurvy. It is self-evident that the clinical application of Vitamin C is useful in the first place, when a pronounced lack of Vitamin C exists, as in scurvy and in the so-called
Moeller-Barlow disease. Though in our latitudes fully developed avitaminoses C are not so frequently seen as in times past, a glance over the literature concerned will prove that with us also, scurvy is not at all a rare disease. During recent years reports of epidemics of scurvy have been frequently published in European countries as well as outside of Europe. Least often scurvy is seen in Germany itself. Ever since greater attention has been brought to bear upon scorbutic and prescorbutic conditions these diseases have been observed more frequently. For the purpose of taking timely therapeutic measures in a given case, especially following persistent dietetic treatments—gastric ulcer, typhoid, celiac disease and in sequence of long continued infections—it is necessary to watch for symptoms of scurvy. All diseases due to scurvy are cured by ascorbic acid in a short time, even in cases, when for some reason nutriment rich in vitamin C may not be indicated for the time being. Indeed a striking improvement or cure of scurvy, even in grave cases, may be achieved by intravenous application of ascorbic acid. Daily doses of 50 to 100 gm. are used intravenously (Schultzer, Bauke). In many cases the intravenous application is superior to the peroral because under certain conditions Vitamin C perorally given is imperfectly absorbed in the gastro-intestinal tract, or not at all (Stepp). Indeed there have been cases of scurvy reported which behaved refractorily under peroral Vitamin C treatment, but reacted promptly upon intravenous injections.

That ascorbic acid is well tolerated is of specific advantage in the treatment of infantile scurvy, Moeller-Barlow disease, because it is commonly known that fruit juice in large quantities in nurslings and smaller children may give rise to disturbances of the gastrointestinal apparatus. On account of great solubility and agreeable taste of the remedy the treatment with ascorbic acid in children does not meet with difficulties (Brugsch).

In a given case ascorbic acid may be given intramuscularly, as there is no occasion of any local reaction to be feared, since the sodium chloride salt of it has to be employed for parenteral use. Just how excellent the results from ascorbic acid are in Moeller-Barlow disease has been proven by reports of cures having been obtained in the course of two or three weeks in children with extensive hemorrhages in the skin and zones of destruction roentgenologically demonstrable at the bone-cartilage junctions.

The dose for children is 30 to 50 mg. daily per os. Here also additions are never of disadvantage, since the remedy is excellently tolerated and there is no danger of an hypervitaminosis C.

Hypovitaminosis C. The clinico-diagnostic preponderance does not lie in the well-known classical syndrome of scurvy, but more often in the prescorbutic forms, the hypovitaminoses. Disease conditions of undefined character are designated hypovitaminoses due to an impoverishment of the economy of one or more vitamins without giving evidence of typical symptoms of avitaminoses. With Vitamin C it was strikingly shown that there existed a gradual dependence of the gravity of the scorbutic disease to the quantity of Vitamin C supplied. The difference is very great between
the vitamin quota, merely restricting the appearance of scorbutic manifestations and those necessary to prevent pathologically demonstrable scorbutic changes, of teeth or bone, for example. In reference to man these experimental results presage that there exists a great span between the lowermost limit of the minimum requirement, determined by purely clinical means, and an optimal supply to the organism.

During the past years many investigators have paid special attention to the prescorbutic hypovitaminotic symptom complex. Today a series of disease conditions are ascribed to a relative Vitamin C deficiency. Among them, for instance, are tendency to bleeding gums, spring fatigue, susceptibility to gastrointestinal and respiratory infections, obstinate pyurias, certain capillary hemorrhages, and dental caries (Morawitz, Reyher).

In the prodromal state of scurvy Morawitz has observed particularly complaints of exhaustion, anorexia, dyspnea, heart trouble and rheumatic pains in the legs. Essential features of a relative lack of Vitamin C in children are designated: retarded progress of weight and longitudinal growth; pallor; reduced appetite; tendency to infections (also called dysery) and the occurrence of muco-bloody stools.

According to Göthlin, who believes by using a special method of testing the capillary tonus that he can objectively apprehend very early conditions of hypovitaminosis C, there exists frequently in Swedish children, at least, a malnutrition with reference to Vitamin C.

A deep insight into the metabolism of Vitamin C and an understanding of the development of an hypovitaminosis C could be gained only when the pure substance was at hand and investigations could be carried out on a larger scale. Elimination tests gave proof that in many disease conditions the Vitamin C consumption of the human economy was increased as compared with the normal. This was demonstrated in febrile infections, as, for instance, pneumonia, gastroenteritis, typhoid, tuberculosis and conspicuously in cancer and diabetes (Schroeder). Without compulsion and without referring to a theory of infection these observations explain the frequent appearance of scorbutic conditions in the course of epidemics. It has been known for a long time that the growing organism consumes much larger quantities of vitamins than the adult, the same holding true during the period of pregnancy. In addition Stepp has pointed out that a disturbance of absorption of the vitamins may be responsible for many hypovitaminotic conditions, for instance, in gastro-enteritis, where less vitamin is resorbed because of accelerated passage through the small intestine. Noteworthy besides is the fact that Vitamin C is quickly destroyed by certain intestinal bacteria, for example, the coli group and paratyphoid B. With a pathological colonization of the stomach and upper jejunum by such bacteria this might lead to a considerable loss of vitamin C (Stepp and Schroeder).

Hemorrhages. The indications for treatment are obvious. In all conditions mentioned one would seek to get an increased supply of vitamin by a suitable diet and only take recourse to the isolated vitamins in case of com-
plete anorexia. The range of indication for ascorbic acid has been extraordinar-ily extended, since it has been recognized that like all other vitamins ascorbic acid is an active remedy possessing new and entirely unexpected curative properties other than the specific antiscorbutic effect. (Pfannen- stiel, Stepp). Investigation of the clinical possibilities of isolated Vitamin C is greatly facilitated by the fact that it has no toxic effects, peroral or parenteral doses of \(\frac{1}{2} \) gram or more being well tolerated. It is commonly known that hemorrhages are outstanding symptoms of Vitamin C defi-ciency. It seems reasonable, therefore, to try ascorbic acid in diseases associated with hemorrhage. As a matter of fact the acid proved to be an excellent hemostatic in many cases (Boeger and Schroeder). It is principally indicated in hemorrhagic diatheses. In cases of Schoenlein-Henochs purpura and of essential thrombopenia, the most serious hemorrhages of this sort have been successfully arrested by intravenous injections of Vitamin C in large quantities.

The often-time striking improvement of hemorrhagic diatheses appearing as a consequence of infectious diseases and the increased consumption of vitamin C during various infections lead to the question as to whether an hypovitaminosis may not be correspnsible for the capillary toxicosis in the sense of Schoenlein and Henochs disease. Not commensurably successful are the treatments of the hemorrhages in Werlhof's disease with isolated Vitamin C. Perhaps it is particularly through these varying therapeutic experiences in this malady, pathogenically still undefined, that a better insight of the essence of it may be obtained.

Hemophilia, so difficult of treatment, may be influenced with eminent success by the pure Vitamin C. The good results, first reported by Boeger and Schroeder, from the use of ascorbic acid in this dreaded blood disease, have been confirmed by others many times. Just how the ascorbic acid is linked in detail with the blood chemistry of hemophilia is not entirely clarified. It is true indeed that a peroral or better a parenteral treatment with the pure Vitamin C succeeds in reducing bleeding and clotting time from 6 to 10 hours to a few minutes, and to markedly improve the general condition of the patient. However, a continued or only interrupted by short intervals, treatment is necessary. In addition recent clinical observa-tions indicate that ascorbic acid acts favorably upon pulmonary (Alex- ander) gastrointestinal-, renal-, and the dreaded post-icteric and post-typhoid hemorrhages. Most excellent is the effect upon the juvenile genital hemorrhages (Vogt, Junghans). To achieve success with these bleedings it is necessary, however, to supply Vitamin C parenterally in doses of 200-500 mg. daily.

The working mechanism of ascorbic acid as to hemorrhages is not entirely cleared up. It appears that Vitamin C has a vascular effect in the sense of rendering the capillary walls impermeable. This is indicated by the observation in Warlhof's disease, for instance, that the bleeding ceases at a time when the blood platelets have not yet increased (Boer- gerand, Schroeder). In all cases of thrombopenia an increased formation of blood platelets prevails following parenteral vitamin treatment. Ac-
According to the general behavior of the blood platelets ascorbic acid evidently has a favorable influence upon the bone marrow in the sense of an increased thrombocytopoiesis. As a matter of course the observation of Kühnau also has to be referred to for the explanation of the Vitamin C effect upon hemorrhages,—that the clotting is accelerated by ascorbic acid because of an activation of the thrombin.

The question is still undecided whether the hemostyptic effect of Vitamin C is linked with the observed increase of the albuminous portion of the blood plasma. According to Boeger and Schroeder the albumen content of the plasma is materially increased following administration of ascorbic acid.

Through the manifold working possibilities of ascorbic acid its beneficial action upon hemorrhages, entirely unlike genetically, appears rational. In hemophilia, for instance, it is the clot-producing faculty of the acid which must be regarded mainly as the curative factor. In the other diatheses it is either the effect upon thrombocytopoiesis and capillary permeability, perhaps also the changed blood chemistry, or it is the sum of all activities of ascorbic acid to which the hemostyptic power is due.

From our knowledge to date about the working mechanism of Vitamin C, it is evident that its specific field of application is for treatment of capillary hemorrhages, as they occur in the most varying disease conditions. In the hemorrhages from larger vessels ascorbic acid at best is useful only in a supporting sense.

Vitamin C and the Red Blood Picture. As mentioned above pharmacological investigation of the acid had demonstrated a marked action upon the red blood picture of "saponin anemic" cats. In man a direct effect upon hemoglobin and erythrocytes has not been made evident (Boeger and Martin).

Administration of Vitamin C alone fails to successfully establish an improvement either of the secondary or of the hemolytic anemias. An increase of the reticulocytes in the blood following intravenous injection of Vitamin C does speak, however, for certain relations between the vitamin and the hemopoietic system (Seyderhelm and Grabe). It seems to be a fact that ascorbic acid promotes liver activity in the treatment of Biermer's anemia with Campolon. Good results from Vitamin C and iron combined in secondary and achlorhydric anemias commend the use of Vitamin C in these diseases, at least, as a supporting measure (Boeger and Martin).

Upon the white blood picture, Vitamin C has no effect worthy of note.

Vitamin C and Pigment Metabolism. There is some contention about the relationship of ascorbic acid and the pigment metabolism. Pathological pigmentation as a symptom of various avitaminoses is well known. Indeed the existence of pigment vitamins has been taken for granted. Processes approaching avitaminoses lead probably to formation and precipitation of skin pigments (Morawitz). It does not mean, naturally, that Vitamin C is the sole pigment vitamin. Some experimental and clinical observations, however, make it appear that ascorbic acid has a bearing
upon pigment formation. The demonstration of melanin formation in vitro being inhibited by ascorbic acid (Szent-Györgyi) was supported by other investigations, showing that in the so-called Dopareaction the darkening of the pigment-forming skin cells in histological sections by a solution of dioxyphenylalanin was prevented by the presence of ascorbic acid (Schroeder). In addition it is a conspicuous fact that ascorbic acid occurs in high concentration in the organs which are of importance to the pigment metabolism, namely, the adrenals and the hypophysis. Recently Vitamin C has been demonstrated in pretty generous amounts in the epidermis of the skin (Giroud and co-workers). Other than such single determinations, so far an accurate knowledge of the interrelation of ascorbic acid and pigment has not resulted. Practical experiences, however, with Vitamin C treatment of certain pathological pigmentations are giving promise of success. In Addison’s disease a clearing up of the skin may be obtained by an energetic peroral or parenteral therapy with Vitamin C. In some cases after the disease itself has been successfully treated with cortin, the hyperpigmentation reacted favorably only after Vitamin C had been supplied. Furthermore ascorbic acid is of good effect especially when used parenterally, in chloasma-like melanoses and pathological pigmentations, often appearing with chronic diseases of the gastrointestinal tract, for example, gastroenteritis and achlorhydric anemias, and disease symptoms also designated at Addisonism. Successes with Vitamin C in other hyperpigmentations such as chloasma uterinum do not correspond. Treatment of the disturbances of the pigmentary metabolism with ascorbic acid proceeds quite analogously to that of the hemorrhages. Here again it is recommended to institute an energetic parenteral therapy if the supply of nutriment rich in Vitamin C or ascorbic acid, perorally given, fails of results.

Vitamin C and the Gastrointestinal Tract. Previously it was mentioned on occasion of the hypovitaminoses that a relative depletion of vitamin might appear in certain diseases of the gastrointestinal tract despite an adequate supply of vitamins, thus, for instance, through faulty absorption of vitamins in gastroenteritis. Besides it is to be considered, as certain investigations have shown, that in sequence of an achylia in the stomach a reduction of the Vitamin C depot may obtain in spite of a nutrition rich in the vitamin (Schnell, Ragnar). On the other hand, Verzar has pointed out that some vitamins especially favor resorption of nutriment in the gastrointestinal tract by inciting the motility of the intestinal villi. Thus a resorption-acceleration effect, of glucose for example, has been demonstrated for Vitamin B complex (Verzar) and Vitamin C (Schroeder). That Vitamin C is of consequence to the intestinal tract is elucidated by evidence that in many mammals the wall of the small intestine is one of the depots of ascorbic acid. As to storage of the acid it does not make any difference if the vitamin is supplied orally or parenterally. In the guinea pig fed a Vitamin C-free diet it is worthy of note that the wall of the small intestine as a Vitamin C depot is filled first after the supply of ascorbic acid has begun (Zilva, Hopkins, Jacobson). This close
relation of locality between vitamin and gut wall seems to have a meaning for the biological events. There exists in fact a signal tendency to infections of the gastrointestinal tract with Vitamin C deficiency. In animals it has been shown experimentally that mechanical insults of the duodenal mucous membrane heal rapidly and completely under a diet rich in vitamins, while peptic ulcer arises with lack of Vitamin C. Indeed according to other investigations gastric and duodenal ulcers developed in a high percentage of cases when the nutrition was made up by a diet poor in Vitamin C (Smith and McConkey).

In accord with these studies it appears as if Vitamin C is of special importance in the prevention of ulcer formation in the gastrointestinal tract. Finally, it must be mentioned that the intestinal bacteria vary greatly in their reaction toward Vitamin C. While some species do not seem to have any visible influence upon ascorbic acid, others, for example, some coli strains and b. paratyphosus B, under the same conditions, are able to rapidly destroy the pure Vitamin C. The possibilities of absorption of Vitamin C, when the stomach and upper intestine have been pathologically colonized with such germs, are evident. For prevention and treatment of scurvy and prescurvy symptoms due to disturbances of resorption of varying nature, the opportunity of a parenteral administration of Vitamin C is specifically welcome. On the basis of clinical observations, many years ago Stepp recommended a generous supply of Vitamin C in gastric and duodenal ulcer. In addition recent experiences indicate that in these intestinal lesions the tendency to bleeding is reduced by Vitamin C at the same time.

In combatting anorexia it is important to remember that according to Bickel the secretion of the digestive glands in avitaminoses is torpid only because food poor in vitamins fails to strongly incite secretion.

Vitamin C and Dental and Osseous System. The sequels of a Vitamin C deficiency appear to be noticed first in the teeth and at so early a time that other manifestations of the disease are not demonstrable histologically (von Euler, Vilton and Hoejer and Westin, Walkoff). It amounts to a degeneration of the odontoblasts. The process goes on to a reduction of protoplasm with proliferation of connective tissue. Proceeding it results in an infolding of the inner side of the dental cone and also in a deposit of hard tissue against the predentine zone. By continuation of the process the pulp is finally changed to an acanalized indurated tissue. It is worthy of note that all these degenerative changes are enabled to regenerate following administration of Vitamin C. Studies of tissue sections have shown that the ascorbic acid is localized in the immediate proximity of the enamel and the dentine-forming cell stratum. The importance of the vitamin for the teeth is also emphasized in the well-known changes of the gums, appearing with lack of Vitamin C. Beginning with a swelling of the interdental papillae and a bluish discoloration of the gum margins it leads easily to bleeding and to very sensitive ulcerative changes between the teeth. The development of caries by faulty formation of enamel is likewise initiated by a Vitamin C deficiency. From what has
been said it is very evident that the diseases of teeth and gums are the field of indication for Vitamin C. To improve tooth formation in children it is important not only to look to an adequate supply of Vitamin D, but also to bear in mind the great importance of Vitamin C for dental development and maintenance. Experiences of prominent dentists indicate another field for application of ascorbic acid in gingivitis, paradentosis and alveolar pyorrhea, so difficult to treat. In this connection it is of interest to note that a recipe has been found in the herb-book of Matthiolus of 1563 and another of Tabernaemontanus-auchinus of 1731, in which the hip berry, now known as containing much Vitamin C, was recommended in the treatment of bleeding teeth and in the form of tooth powder for strengthening and firming the gums.

Roused by the bony changes in scurvy pure Vitamin C has also been given in cases of a tendency to fractures and to accelerate healing of fractures.

Vitamin C Metabolism in Pregnancy, Lactation and Growing Age. In view of the impossibility of discussing all problems comprising the Vitamin C metabolism during pregnancy, lactation and the age of growth, only the newly gained knowledge supplied by the isolation and the possibility of quantitative determination of Vitamin C may be used. For a long time a diet especially rich in Vitamin C has been recommended for the expectant mother because of the increased need in the organism for Vitamin C during pregnancy. Nevertheless, the manifestations of hypoor avitaminoses are frequent in pregnant women and more portent of danger, as they may mean harm to the child's economy. Well known is the rising appearance of caries during pregnancy. To a great extent that must be due to a relative lack of Vitamin C in the food. Indeed based upon animal tests it has been accepted that under these circumstances a Vitamin C deficiency in the food might be the cause of feminine sterility and of a tendency to abortions and miscarriages.

Already the embryonic adrenal is able to provide Vitamin C and it is also known that the placenta possesses an ascorbic acid storage function (Neuweiler). Perhaps this elucidates the observation that in gravid animals on a Vitamin C-free diet the development of scurvy is retarded, but later their collapse is obtained very much quicker. Weight reduction and scorbutic blood changes occur twice as severe in gravid as in normal animals.

Of interest is the evidence showing that nurslings on a Vitamin C-free diet during the early months of life are able to form the vitamin themselves (Beszonoff). In fact, scurvy in infants up to 3-4 months of age is as good as unknown. Only after the age of one year the organism of the child loses this faculty. In man a congenital scurvy has not been described to be certain.

The proper composition of mother's milk is of the highest import to the infant's nutrition. The occurrence of deficiency diseases in nursing children shows that even mother's milk may be inadequate as to its vitamin content. Normal human milk has 4-7% of ascorbic acid which is much
more than the cow's milk tests. However, in women who receive very little Vitamin C in their food; the ascorbic acid content of their milk may drop to less than 1 mg. %. By a Vitamin C-rich nutrition and peroral or parenteral ascorbic acid medication it is easily possible to enrich the milk. Therefore, the Vitamin C content of human milk depends upon the kind of nourishment (Neuweiler).

As Guggisberg has justly emphasized, the provision of an incontestable cow's milk is one of the most urgent demands of modern hygiene. Just how essential a sufficient Vitamin C content is in cow's milk may be proven by the fact that scurvy is found practically only in artificially nourished children. It is unknown in nursing infants. According to recent investigations cow's milk contains 0.07 to 1.1 mg. % of Vitamin C which is only a fraction of that of mother's (Neuweiler). At the same time the Vitamin C content of cow's milk is subject to great fluctuations depending upon the kind of food; therefore, the summer milk contains more vitamins than that of spring and winter.

Furthermore, the Vitamin C content of cow's milk is also dependent upon the manner in which it is handled, a reheating of an already pasteurized milk is especially harmful. Investigations of this problem have shown that in pasteurizing, the kind of metal the milk comes in contact with plays a role. When the milk is heated for 30 minutes to 60° C in an aluminum vessel only 20-40% of the Vitamin C content is lost, but in a copper vessel the loss is 80-100%. When the milk is heated at 120° C for an hour practically all of the vitamin has disappeared from it (Report of the Medical Research Council).

Contributing to the destructibility of Vitamin C by heating is always the free access to air. In the autoclave the Vitamin C-containing substances may be heated to higher temperatures without suffering an appreciable loss. Recent experiences indicate, however, that the primary Vitamin C content of milk is the most valuable. The changes the vitamin substances are subject to by the usual methods of handling are of subordinate importance.

Doubtless the ideal vitamin content of cow's milk because of varying favorable housing and feeding conditions of the cows is not always obtained. Therefore, it surely signifies progress in dietetics that a quantitative vitamin determination may be entered upon and that the vitamin content of the milk may be regulated by increasing the supply of vitamin, and, if need be, adding the isolated form.

Generally speaking Vitamin C is not growth promoting. Nevertheless like all vitamins it plays a large role in disturbances of growth in the child. With a deficient provision of Vitamin C in the child's organism comes an inhibition of growth without scurbutic symptoms being in evidence. This may perhaps be an expression of a metabolic dysfunction. With a generous supply of Vitamin C in such children an increased start and a promotion of longitudinal growth is achieved.
VITAMIN C CONTENT IN SOME FOODS

in milligrams per 100 grams of substance

<table>
<thead>
<tr>
<th>Substance</th>
<th>Raw</th>
<th>Cooked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk, butter cheese cow's</td>
<td>0.5-1</td>
<td></td>
</tr>
<tr>
<td>Flour Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potatoes</td>
<td>10</td>
<td>5-10</td>
</tr>
<tr>
<td>Vegetables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinach</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Cauliflower</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>Green Kale</td>
<td>75</td>
<td>16</td>
</tr>
<tr>
<td>Brussels sprouts</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Asparagus</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Cabbage</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>Cabbage, red</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>Kohl Rabi</td>
<td>100</td>
<td>16</td>
</tr>
<tr>
<td>Beets, Red</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Beets, Teltow</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>Rutabaga</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Black Roots</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Horse Radish</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Legumes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Beans</td>
<td>10</td>
<td>1-4</td>
</tr>
<tr>
<td>Yellow beans</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Green peas</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Vegetable Fruit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomatoes</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Melons</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Endive</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Watercress</td>
<td>16-50</td>
<td></td>
</tr>
<tr>
<td>Celery</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Black Radish</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Radish</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Fruit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Leek</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Parsley</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Fruit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oranges</td>
<td>50-100</td>
<td></td>
</tr>
<tr>
<td>Mandarines</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Lemons</td>
<td>50-100</td>
<td></td>
</tr>
<tr>
<td>Grape fruit</td>
<td>50-100</td>
<td></td>
</tr>
<tr>
<td>Strawberries</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Currants, Black</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Currants, Red</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Raspberries</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Gooseberries</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Apples</td>
<td>2-5</td>
<td></td>
</tr>
<tr>
<td>Pears</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>Quinces</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Cherries, yellow</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cherries, black</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Blueberries</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Blackberries</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Cranberries</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Grapes</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Apricots</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Peaches</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Plums, dried</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Cucumbers</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Salads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field lettuce</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Head lettuce</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green leaves</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Yellow leaves</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Bananas</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Pineapple</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Hip-rose berries</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Figs</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Dates</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Ever and again pediatricians have called attention to the dysregulation of the child's organism under Vitamin C deficiency. It is manifest in lowered immunity and resistance to infectious diseases several months before symptoms of scurvy appear. In these conditions an energetic treatment with ascorbic acid has its proper place. It is indeed surprising to note the variously reported differences in duration of recovery from frequent infections in children, for example, pyuria, before and after Vitamin C therapy (Conti, Reyher).
VITAMIN C

The old conjecture that there existed, besides the one known, a second Vitamin C seems to find confirmation in the results of recent investigations of von Euler. It was demonstrated that guinea pigs, fed Vitamin C-free diets, could be more thoroughly protected against infections with pneumococci by lemon or orange juice, than by pure ascorbic acid. Therefore, von Euler assumes that in lemon or orange juice still another Vitamin C exists to which the preventive effect toward bacteria mainly must be ascribed. This has been named Vitamin C₂ and recently Vitamin J.

BIBLIOGRAPHY FOR VITAMIN C

Auler, Frankfurter wissensch., Woche, 1935.
Bauke, M. m. W., Nr. 32, S. 1240, 1934.
Birger, "Der Wendepunkt", Nr. 10 and 11, Oktober 1936.
Böger and Martin, M. m. W., Nr. 12, 1935.
Böger and Schroeder, M. m. W., Nr. 34, 1934.
Böger and Schroeder, Klin. Wschr., Nr. 23, 842, 1934.
Brugsch, D. m. W., Nr. 32, S. 1202, 1934.
Dallmer, D. m. W. Nr. 32, S. 1200, 1934.
Diehl, unveröff. Versuche
Gander and Niederberger, M. m. W., Nr. 34, 1386, 1936.
Harris and Ray, Lancet, 12, 71, 228, Jan. 1935.
Höjser and Westin, Dental Cosmos, Bd. 67, S. 1, 1925.
Hopkins, Chemistry and Industry Nr. 42, 53, 874, 1934.
Jacobsen, Hospitalstidende, Nr. 5, 131, 1935.
Jeney and Törö, Virch. Arch., Bd. 1, Heft, 298.
Johnson and Zilva, Biochem. J., Nr. 4, 28, 1934.
Kahler and LaCroix, Klin. W., Nr. 52, S. 1851, 1935.
Mahlo, Dtsch. m. W., Nr. 3, 1936.
Martini and Bonsignore, Biochem., Z., 170-177, 273, 1934.
Müller and Buschke, Schweiz. m. W. Nr. 12, 277, 34.
Vitamin C

Pfannenstiel, Frankfurter wissensch., Woche 1935.
Schnell, Ragnar, Hygieia (Stockholm) 95, 728-733, 1933.
Schroeder, Klin. W., Nr. 15, 553 (Zit. von Stepp), 1934.
Schroeder and Dormann, Endokrinologie, April 1936.
Schultzer, Lancet, 225, 589, 1933.
Seyderhelm and Grebe, Monographie, J. A. Barth, Leipzieg, 1934.
Slot, Diss. Amsterdam, 1931.
Smith and McConkey, Arch. int. Med., 51, 413-426, 1933.
Stepp, Frankfurter wissensch., Woche, 1935.
Stepp and Schroeder, Klin. W. Nr. 5, 147, 1935.
Szent-Györgyi, D. m. W. 15, 556, 1934.
Szent-Györgyi, D. m. W., 852, 1932.
Szent-Györgyi, British Medical Journal, 22, 558, September 1934.
Tillmans et al., Biochem. Z. 250, 312, 1932.
Zerzár, Pflügers Arch. S. 675, 206, S.
Vogt, M. m. W., Nr. 7, 263, 1935.
Vogt, M. m. W., Nr. 21, 791, 1934.
Zilva, Biochemical Journal, Nr. 1, 100, 29, 1935.
CHAPTER FOUR

VITAMIN D

Brief Historical Introduction. The symptomatology of the English disease or rachitis was fully described by the English physician Glisson in 1650 after its occurrence had been observed some 30 years previously in Dorset- and Somerset shires. We may assume, however, that the disease has accompanied mankind since time immemorial; indeed in prehistoric animals bone changes have been found supposed to be rachitic. Much thought has been given to the question of origin without arriving at a uniform conception. The theory of infection acting as a cause was opposed by the assumption that rachitis be regarded as a deficiency disease, or that it resulted through environment. The environment theory pointed to the peculiar geographic distribution of the disease, and to the fact that it occurred especially in children being brought up in dark habitations. Only in recent decades positive proof was successfully established that rachitis, like other deficiency diseases, could result from absence in the nourishment of a so-called accessory food-factor, Vitamin D. It is, therefore, a matter of indifference in the end whether the lack of vitamin is due to absence of the real vitamin in the food or whether the want of radiant-energy effect upon the skin in the form of short-wave light, which has to activate the precursor of the vitamin, is responsible. How much the phosphorus and calcium intake, or, to be accurate, their quantitative proportion, (being very active in calcification processes of the bones in young growing rats), is of import to man, cannot be clearly surveyed at this time. The entire Vitamin D research is based on the observations of McCollum and Mellanby, assigning the cause of evolution of rachitis to the lack of a fat-soluble vitamin in the food. It is found abundantly in cod liver oil and may be separated by suitable means from the associated Vitamin A.

Chemistry. That the studies of the chemical nature of Vitamin D were finally crowned with success rests upon two discoveries of decisive importance. First, Huldschinsky, a pediatrician in Berlin, showed that artificial ultraviolet irradiation would cure infantile rachitis. Second, the observation of American investigators is that anti-rachitically inactive animal and vegetable tissues, after having been irradiated with ultraviolet light, would cure rachitis (Alfred F. Hess and coworkers). After long continued and laborious investigations in which chemists and physicists participated equally, the substance was found at last in ergosterol, a stearin present in fungi and ergot, being a contamination of cholesterol, which on irradiation becomes even in small doses a highly potent antirachitic
(Windaus). By ultraviolet irradiation of certain wave lengths—256-313 μμ (optimal 290 μμ), there finally resulted highly potent crystallizations equal to Vitamin D, or calciferol (British). Later it appeared, however, that these crystallizations were not yet pure Vitamin D, but a molecular compound of the pure Vitamin D and an inactive lumistearin. By continued work with the substance the pure Vitamin D was finally obtained and also Vitamin D₂ called “Calciferol New” (Windaus et al, Bourdillon). Between the theory of environment and the view that rachitis was a deficiency disease a bridge was built in a manner never anticipated. From irradiation of ergosterol not only Vitamin D but a series of chemically related transitional- and by-products arises, which Windaus has arranged as follows:

\[
\begin{align*}
\text{ERGOSTEROL} & \\
\text{LUMISTEARTIN} & \\
\text{TACHYSTEARTIN} & \\
\text{VITAMIN D} & \\
\text{SUPRASTEARTIN I} & \text{TOXISTEARTIN} & \text{SUPRASTEARTIN II}
\end{align*}
\]

Vitamin D has the same gross formula as the ergosterol, of which it is to be regarded as an isomeric product. The gross formula is \(\text{C}_{28}\text{H}_{44}\text{O} \) and the structural formula of ergosterol is as follows:

![Ergosterol structural formula](image-url)
Vitamin D differs from ergosterol by showing only three rings, but possesses four double bonds. During the irradiation of ergosterol, ring-opening takes place. Vitamin D has the above constitutional formula.

The pure Vitamin D is a well crystallized substance with a melting point of 115°–117° and \([\alpha]_D = +102.50°\). In contrast to its mother substance, the ergosterol, pure Vitamin D is not precipitated by digitonin. It is soluble in acetone, chloroform, benzine and alcohol. It is very resistant to high temperatures. The ultraviolet irradiated substances do not lose their antirachitic effect by cooking or baking. Mineral acids destroy the Vitamin D only slowly.

Determination of Vitamin D. At present there are no positive methods of determination, either chemical or physical, for Vitamin D. The colorimetric methods described ever and anon are of no use, being nonspecific, and, therefore giving inaccurate values. The only method at our disposal to ascertain Vitamin D is the biological test. It is based upon the property of the vitamin to prevent or cure the bone changes of rats fed on a rachitogenic diet. There are, therefore, two methods of Vitamin D testing to choose from—the prophylactic and the curative, which are of equal value with sufficiently large animal material to work with and a correspondingly large experience. The curative methods rest upon the fact that rachitic rats following treatment with Vitamin D-containing substances show in the distal ends of their rachitic bones healing processes in proportion to the dose administered. The stepwise manner of these changes may readily be discerned (McCollum et al). In the so-called “line test” the degree of healing is ascertained by putting a bone in a nitrate of silver solution and exposing it to natural or artificial light. By this method the freshly deposited calcium becomes nicely visible, being blackened by the colloidal silver. According to the breadth of the calcified zone the varying degrees
of healing are estimated. The roentgenological method which may be employed as well in a prophylactic as in a curative sense has continued to prove reliable. By means of a scale the grade of rachitis and the extent of the healing processes at the epiphyseal lines may be read in an X-ray film of the bone endings (Windaus, Scheunert, Schieblish, Holtz, Laquer, Kreitmair and Moll). Another method of ascertaining the curative effect of Vitamin D is the examination of the ash content of bones of young rats fed on a rachitogenic diet. The substance to be determined is fed on a basis of a fixed dosage. Its effect is read out of the bone-ash-content of the test animals. A controlling series of animals, which have been fed a standardized preparation of the vitamin, serves as comparison. The ash-content of the bones stands in direct relation to the Vitamin D content of the diet (Hume-Pickersgill-Gaffikin). Still another method of determination is very interesting; it is based upon a change of the pH value of the feces at the beginning of recovery from rachitis from slightly alkaline to slightly acid. Of all the methods the roentgenological examination has been given preference. It is done incomparably quicker, for example, than the determination of the ash content of bones, and by maintaining a fixed method as shown chiefly by the work of Windaus and his school, it produces sufficiently accurate values. All of the methods demand a large experience and must be studied in the respective text books.

Vitamin D Units. The Vitamin D standard set up by the International Vitamin Conference is a 0.01% solution of irradiated ergosterol in olive oil. Designated as International Unit Vitamin D, it is that quantity of Vitamin D which possesses the antirachitic power of 1 mg. of the standard solution. This amount of standard solution corresponds to 1/10,000 mg. (equals 0.1 \(\gamma \) of ergosterol, which was employed originally to make the standard solution). The biological unit ever and anon referred to in the literature is that smallest quantity of Vitamin D, which supplied daily for 14 days to young rats fed on a fixed diet, completely protects them against rachitis. The clinical unit equals 100 biological units (equals 12.5–17 International Units).

Commercial Preparations. In Germany pure Vitamin D is on the market as Vigantol, and that in the form of Vigantol oil or of Chocolate tablets, Vigantol cod liver oil and Vigantol salve. The oil represents a 1% solution in olive oil, 5 drops corresponding to 10 clinical units. The chocolate tablets contain a like amount. The Vigantol cod liver oil and the preparation known as “detavit” include Vitamin D as well as Vitamin A, in standardized form. The dose for nurslings and small children is 1/2 to 1 teaspoonful; for larger children 1-2 dessert spoonfuls, and for adults 1-2 teaspoonfuls once a day. The Vigantol ointment must always be freshly made; it contains 0.5%–1% of Vigantol. A strong Vitamin D-containing ointment is on the market under the name of Unguentolan. Foreign commercial preparations are Viosterol and Radiosterol. There are a number of standardized cod liver oils for sale under various names.

Occurrence of Vitamin D. Compared to other vitamins, Vitamin D is scarce in Nature. Main sources of Vitamin D or its precursor in our food are: butter, milk, egg yolk, yeast. There are only traces of it in vegetables,
VITAMIN D 89

if any. Indeed some cereals may, at least in rats, by their low phosphorous content (the phytin phosphorus in vegetable matter the organism cannot metabolize) have direct rachitogenic activity. On the other hand our customary edible mushrooms have clearly demonstrable quantities of Vitamin D, and the same is true for certain grain germs. The Vitamin D content of animal foodstuff depends on the fodder with which the animals have been nourished. By irradiation with sun or ultraviolet light the antirachitic value of the food may rise considerably. Cow's milk abounding in phosphorus and calcium has far greater antirachitic value, than its low Vitamin D content would indicate.

Exceedingly rich in Vitamin D are the various fish-liver oils, of which the best known and most used therapeutically, is the cod liver oil. However, the Vitamin D content of it is not constant, fluctuating between 0 and 20 biological units per gram. The livers of other fish, for example, halibut and shark, also have a high vitamin content, while the liver oils of whale and dogfish have much less of the specific substance. There are species of fish, the liver oils of which hold many times the Vitamin D content of cod liver oil. Comparing the vitamin content of butter, for instance, a good cod liver oil contains 20 to 400 times as much Vitamin D as an equal quantity of butter. Just why so much Vitamin D should be stored in the fish livers has caused a good deal of brain work. The kind of feed of the fish cannot explain the abundance of vitamin present (Bliss, Hess). Today it is assumed that the Vitamin D factor is formed in great quantities in the fish livers by a so-far-unknown synthesis. The assumption has not been substantiated. Equally undecided is the question whether the antirachitically active substance of the fish livers is identical with the Vitamin D obtained by irradiation of ergosterol or not, though their biological behavior is alike (Dalmer, von Werder and Moll).

Lack of Vitamin D in the nutriment is offset by the exceedingly frequent occurrence of the provitamin, and by the possibility of a photochemical synthesis of Vitamin D in the skin of man and animal.

Vitamin D Requirement. Contrary to Vitamin C, which is synthesized by most animals themselves, almost all laboratory animals depend upon their food for their supply of Vitamin D. The Vitamin D requirement of a healthy little child amounts to 12-15 International Units (about 1 clinical unit daily), while to recover a rachitic child needs at least 5 clinical units per day. Quite similar as with the other vitamins, these figures only indicate a rough average since the requirement is never the same, but dependent upon diverse circumstances. For instance, the relation of calcium to phosphorus in the food which plays a pace-making role, at least, in test animals (McCollum and co-workers) must be emphasized. And also, the very frequently observed appearance of rachitic symptoms following infections speak for the fact that infections and the defense against them raise the Vitamin D requirement of the organism. It happens likewise in cases of certain diseases of the gastrointestinal tract, for example, celiac disease and choledochus obstruction (Heyman), conditions, in which probably because of faulty absorption of the vitamin in the gastrointestinal tract, despite a sufficient supply, a tendency to rachitis appears. The consumption
of Vitamin D is increased during pregnancy and puberty, when extension of longitudinal growth sets in. Concerning the question of the need of Vitamin D, of great importance is the recently demonstrated storage of Vitamin D in various organs, for example, in the brain, adrenal, thymus, liver, kidney and in the skin (Goldblatt, Soames and Page). In experimental rachitis a relation of time between the onset of the disease and the duration of the consumption of the vitamin depot has been observed long since (Hess et al). To what extent, however, nurslings may be protected by supplying the pregnant and nursing mother with suitable Vitamin D doses has not been established with certainty. In view of the peculiar susceptibility of prematures to rachitis it has been considered that they in contrast to mature children possess no vitamin depots, as they receive them from the mother during the last weeks before delivery.

Manifestations of Avitaminosis D. Chief symptoms of avitaminosis D are the well-known changes of the skeletal system in the form of an impeded calcification at the epi-diaphyseal margins of the long bones, and the resulting interruption of longitudinal growth. In microscopical sections of bone the disappearance of the characteristic zone of calcification at the epiphyseal lines is specifically impressive. An uncalcified osteoid is formed showing on longitudinal section a characteristic goblet-shaped excavation. As the disease progresses all sorts of bendings of bone appear. One of the first signs is the rachitic rosary, excrescence of the ribs at the bone-cartilage margins. These symptoms of rachitis are assumed to be a disturbance of the mineral metabolism running a natural course in several phases, which is often manifest in a lowered blood-phosphorus level before clinical symptoms arise. Thus, in growing rats the serum phosphorus may drop from the value of 7–8.5 mg.% to 2.8 mg.%. At a later period the calcium balance becomes also deteriorated. However, the calcium level in the serum is far less changed than the phosphorus level. With the onset of healing processes the phosphorus level improves first and then the calcium balance. The question of origin of the phosphatemia in rachitis is still not clarified, but it is assumed as certain that the interruption of ossification in avitaminosis D is not a primary disease of the bone, but a sequence of a disordered mineral metabolism. There are several theories to explain its occurrence. In the theory of absorption it is assumed that the phosphoric acid in the gastrointestinal tract is insufficiently absorbed, whereby the phosphorus level of the serum sinks and the ossification suffers. Another theory points to a dysfunction of incretory glands as a cause of the disease. As a matter of fact there are certain reciprocations between Vitamin D and individual hormones, so that hormonal disturbances may have rachitogenic effect. Some eminent investigators like Mellanby are considering the possible role of toxic substances, so-called toxamines, which are supposed to arise from the food or from metabolism. More recent investigation seems to afford a better understanding of the processes involved in the evolution of rachitis. It was established that bone formation is contingent upon an absorbable calcium-phosphorus complex in the blood, which is absent in rachitis, and its quantity is independent of the total calcium and phosphorus in the serum (Hess). It was conceivable,
therefore, that Vitamin D served as a sort of catalyst for the formation of certain calcium-phosphorus complexes, necessary in the process of ossification. Yet to be mentioned is a so-called renal rachitis in children, developing sometimes into chronic nephritis and presenting in the blood an inorganic phosphorus content above normal. A remarkable feature of this disease is that it reacts negatively toward a Vitamin D supply.

Vitamin D Pharmacology. I. Toxicology. Very soon after discovery of antirachitically highly potent irradiation products of ergosterol, toxic effects of these substances in large doses was reported (Bamberger, Degkwitz, Pfannenstiel, Kreitmair and Noll). The conception that the injuries incited were not due to Vitamin D proper, but to associated substances present proved erroneous, for later it was found that in large doses Vitamin D also showed toxic effects. Pure Vitamin D is merely less toxic than the irradiated ergosterol. The antirachitic action of the latter cannot be separated from the toxic effect ascribed to the so-called calcinosis-factor. That factor is measured by toxic marginal doses, and they are that smallest daily dose which, under certain conditions, produces reduction of weight or death of the test animal (the mouse in this case) (Holtz). As first sign of overdosage there appears in omnivera, a marked hypercalcemia; in herbivora, an equally pronounced hyperphosphatemia. Outstanding changes may be named; rough hide, weight loss, gastrointestinal manifestations, such as anorexia and diarrhea. After a supermineralization of the bones at the outset, it finally comes to a decalcification of the subepiphyseal spongiosa with calcium deposits in various organs as, for instance, in the large vessels, heart, kidneys, and further to nephritis and uremic symptoms, supposed to be due to a toxicosis from protein disintegration. Under calcium-poor, or calcium-free feeding, the organic calcification and the hypercalcemia are less marked, but still evident, which proves that the superfluous blood calcium comes from the bones. Another symptom of hypervitaminosis D is an action upon the fat metabolism resulting in emaciation, lipid infiltration of liver, arterial wall and endocrine glands (Collazo). From hypodermic injection of larger doses of Vitamin D local calcification may develop as a specific effect of the vitamin (von Brand, Holtz). All of the organ calcifications, even the grave ones, are capable of reabsorption according to experiences hitherto obtained (Demole). Of great importance is another observation—that the hypervitaminosis D sets in later and less intensively, if at all, when other vitamins, particularly those of the B-complex and Vitamin A are simultaneously supplied (Harris, Moore, Jusatz).

Hypervitaminosis D is already of great interest for the reason that it constitutes the first instance of a toxic action of large vitamin doses. However, merely for practical purposes it is scarcely of any importance, since the therapeutic spread of Vitamin D, meaning the proportional difference between the antirachitic and the toxic marginal value, is uncommonly great. In animal tests the toxic dose is one thousand times the curative. At any rate a 40 or several 100 fold of a therapeutic dose was given for weeks without disturbances having appeared. The approximate border line dose, from which by its daily administration for weeks symptoms arise, amounts to about 200 times the normal dose. The tolerability of Vitamin D in chil-
children depends upon the degree of the Vitamin D deficit of the organism. Rachitic children tolerate far greater amounts than the healthy. In the few cases where an hypervitaminosis D in man was observed at all, the overdosage showed itself in anorexia, loss of weight, digestive disturbances and nephritic symptoms. At any rate to prevent overdosing, the use of the pure Vitamin D must be restricted to those cases where it is strictly indicated.

II. Pharmacological properties. Vitamin D is according to Rominger "that organic substance" which may remove in smallest doses the rachitic disturbance of the mineral metabolism in man and animal, and prevent it even in the presence of continued rachitogenic injury. In high dosage it causes calcium deposits, cachexia and death of the test animals, and in this respect it is a poison for man as well. Influencing all bony changes concomitant with rachitis and those in a larger sense related to it, it fulfills all the postulates of an antirachitic specificum. In the course of investigations for the purpose of getting conversant with the working mechanism of Vitamin D in the economy, a series of pharmacological effects were met with. In a general way it may be said that the oxidative processes of the organism are increased by physiological quota of Vitamin D. This is supported, among other things, by the observation that the blood catalases rise in test animals fed Vitamin D, and are lowered by overdosage (Jusatz). Following Vitamin D administration the "carbohydrate/lactic acid" quotient rises in the blood in a like manner. In Vitamin D poisoning the decrease of glutathione is looked upon as an expression of a disturbance of the oxidative metabolism (Hesse). The phosphatase content of rats, if worked up entirely, is increased by irradiated ergosterol and the serum cholesterol as well. According to recent work of Alfred F. Hess the rachitogenic-curing effect of Vitamin D, as mentioned, must be ascribed to its ability of building up the absorbable calcium-phosphorus complex necessary for bone formation. Results have been published by investigators regarding the influence of Vitamin D upon blood pressure. By daily dosing with irradiated ergosterol it was essentially increased in dogs. In the intestinal channel Vitamin D may raise the permeability of the gut cells for calcium and phosphoric acid (Drummond, Bond) and may activate the phosphate-splitting ferments. It's quite certain that the raising of the blood calcium level is connected with the blood-clotting effect of the pure Vitamin D (Selye).

Reciprocal between Vitamin D and Parathyroid and Thyroid Activity. The relations to the hormones proved for all vitamins may be assured to a special high degree for Vitamin D. From the start it seemed obvious to consider a connection between Vitamin D and the parathyroid, which has a controlling part in the regulation of calcium metabolism. The difference in action of the parathormone and Vitamin D consists in the fact that the former regulates the calcium phosphoric acid elimination at the expense of the bones, while administration of Vitamin D allows adsorption of calcium and phosphorus by the bones, raising the blood calcium level, for instance, in tetany, by effecting a better utilization of the calcium offered in the food. Nevertheless in large doses Vitamin D may also develop parathormone activity (Demole, Christ). Both, the irradiated ergosterol and
the parathormone are able to raise the calcium content of serum, for example, in parathyroidectomized dogs. It is possible, however, that this effect of Vitamin D in the food is indispensable for development of hypercalcemia by the parathormone. Therefore, in the treatment of rachitis Vitamin D may never be substituted by the parathormone (Soos). However, it is possible to influence the parathyroprival tetany by giving large doses of Vitamin D.

According to other studies Vitamin D may become active by inciting thyroid function. The experimental, as well as the spontaneous human rachitis according to von Nitschke's investigation (not confirmed by others, for example, Fasold) may be relieved of all of its symptoms by feeding thyroid substance. Typical histological changes of the thyroid found in rachitis and improved by the vitamin, speak for a connection between thyroid and Vitamin D. Of thyreogenic origin is supposed to be the sinking of the basal metabolic rate, which is seen in Vitamin D deficiency resulting from a decrease of oxidation. The typical rachitis observed in young thyroidectomized rabbits despite a normal diet, is not curable by Vitamin D, but is with thyroid, which might also speak for a Vitamin D effect by way of thyroid function. It is worthy of note that rachitic rats have been successfully treated by injections of thymus extracts, pointing toward certain relations of thymus and Vitamin D. A more intensive study of the conditions seems urgently desired.

Elimination. The elimination has been studied in the cow. Upon feeding 300 gm. (equals 60,000 biological units) of irradiated yeast, 25% of the Vitamin D fed was eliminated with the feces. In the urine no Vitamin D could be found, but the antirachitic value of the milk had increased considerably, and the relative Vitamin D content moved in inverse ratio to the milk-fat production (Hess et al). Moreover, when Vitamin D has been given, it is also eliminated in the bile (Hefke).

Clinical Application of Vitamin D.*

Rachitis. Research on the pathogenesis of rachitis which reached its crowning success in the elucidation of constitution and in the synthesis of the pure Vitamin D naturally had a bearing upon the treatment of avitaminosis D. The observation that sunlight and artificial quartz light were apt to cure rachitis in entirely the same manner as cod liver oil became intelligible, as explained above, when it was established that the action of short wave light transferred the ergosterol ever present in the skin into Vitamin D. In the treatment with cod liver oil, active vitamin is put into the body from outside. So the chief causes of rachitis are either a deficient supply of Vitamin D in the nourishment or inadequate exposure to sunlight. When this was recognized, new and unforeseen possibilities were disclosed for the prevention and treatment of rachitis. By determination of constitution and the production of Vitamin D in pure form it became possible to really express in terms of weight the Vitamin D requirement of the organism.

By an adequate supply of Vitamin D, either by improving hygienic conditions (light and sun) or by immediate addition of Vitamin D to the food, or by treatment with isolated vitamin, rachitis may be prevented or

cured with assurance. That sunshine and artificial quartz light can cure rachitis by synthesizing Vitamin D in the skin is of great importance for the reason that for the first time a photosynthesis of a vital substance in the skin has been demonstrated. By this discovery the necessity to train the child to be accustomed to fresh air and the great advantage of sports in the free air received an entirely new appreciation. Moreover, the prevention and cure of rachitis were uncommonly facilitated by the possibility of manufacture of highly concentrated, standardized Vitamin D preparations. Up to the time that such were available, cod liver oil was the remedy of choice, and without doubt, it is still an excellent medicament for rachitis. There was a disadvantage, however, in that the vitamin content of the usual preparations on the market fluctuated within pretty wide limits, so that in recent years the liver oils have been standardized. Other objections to the liver oils are the taste and that they are not always absorbed well in the gastrointestinal tract. Of the commercial preparations containing pure Vitamin D Vigantol is the best known in Germany. This is a preparation which has proven exceedingly potent in the prevention and cure of rachitis, and compared to the irradiated food mixtures, it has the advantage that accurate doses may be given.

As mentioned, prematures have a very special tendency to rachitis, which is explained by the vitamin depots being lacking in children. In a general way it may be said that hereditary and congenital evolution of rachitis has not been proven even with nutritional deficiency in the mother. However, while the mother's economy is inadequately supplied with Vitamin D, the infant lives in a condition of latent rachitis. Holding no appreciable Vitamin D reserves the child will succumb to a rachitis on the least provocation. So the prophylaxis may begin with the mother, but a sufficient provision of the necessary vitamins after the birth of the child remains the most important postulate (Guggisberg). In women treated with Vigantol during pregnancy the placenta shows up a great deal of Vitamin D. A like result may surely be obtained by dietetic measures and proper exposure to sunlight. To prevent rachitis in prematures immediate administration of Vigantol has been recommended, three drops twice daily. When vitality is markedly low, smaller doses are feasible, 1 to 2 drops daily of Vigantol. The same dosage is applied in small children for the prevention of rachitis during sunless periods. The vitamin is given for a month with pauses of six weeks. As soon as secondary manifestations arise, for example, diarrhea, the dose must be reduced and Vigantol may be given every second or third day. In florid rachitis of older infants much larger doses are needed, up to 20 drops a day. There has not been any harm observed following these high doses. It must be mentioned that these, and even still larger doses, do not suffice if the florid rachitis is complicated by an infectious disease.

Osteomalacia. As a result of careful anatomical studies the idea has increasingly persisted that osteomalacia, like rachitis, must be referred to as a lack of Vitamin D. In sequence late rachitis and early osteomalacia are entirely identical diseases. It may be said that rachitis, osteomalacia and osteoporosis denote clinical terms corresponding to the different ages of life, but of the same metabolic disturbance. Puerperal osteomalacia,
however, has to be assigned to a place of its own. It is very difficult to explain the result obtained by castration in puerperal osteomalacia, which very likely develops because of withdrawal of calcium and Vitamin D by the fetus. At any rate, it is a fact that the Vitamin D therapy in osteomalacia has rendered excellent results. Vigantol has proven especially reliable, and if given in doses of 6-10 drops daily, it may cure the disease in a few weeks.

Tetany. The third disease, similar to rachitis and osteomalacia, associated with a disturbance of calcium metabolism, is tetany. This metabolic disorder of tetany finds its expression in constant hypocalcemia, though it may be of different origin. Under the heading of “relations of parathyroid and Vitamin D”, the parathyroprival tetany was mentioned, which could be influenced by large doses of Vitamin D. In this case the given remedy is the parathormone of Collip. Lately a modified irradiated product of ergosterol, the so-called A. T. 10 (Holtz), has been used. In proper dosage it raised the blood-calcium level for a long time. The genesis of puerperal tetany does not seem to be quite uniform. If the disease is a disturbance of the vitamin metabolism or if a hypofunction of the adrenal is a factor, it may often be decided only ex juvantibus. In parathyroprival tetany many authors recommend Vitamin D itself as a supporting measure. In larger doses (5-10 times the antirachitic) it may wholly replace parathormone. The formerly so-called idiopathic tetany, which may develop without injury to the parathyroid, is looked upon by many students as merely a certain phase in the course of avitaminosis D. It may appear as a complication of recovery from rachitis, in which, as indicated, the improved phosphorus balance precedes the rise of the blood-calcium level. Out of this so-called spring crisis manifest by a hyperphosphatemia and hypocalcemia associated with an alkalosis (contrary to osteomalacia, in which an acidosis is found), the syndrome of tetany may then develop. The remedy of choice for this kind of tetany is naturally Vitamin D. It is of specific importance that the rather rare cases of rachitis, arising from a disturbed absorption in the gastrointestinal tract, as, for example, celiac disease and biliary obstruction, may be treated parenterally with Vitamin D in the form of Vigantol either intramuscularly or intravenously. The dosage must be adjusted to the quantities given in peroral administration.

Vitamin D and the Bony and Dental System. The close relationship between Vitamin D and calcium metabolism was impressively elucidated by observations during the War of the increase in the number of fractures in children nourished chiefly with margarine and of the sudden decrease of them when butter was again available. Vitamin D may, however, act not only as a preventive, but also, according to clinical and experimental investigations, it has a promoting action upon callus formation and calcium infiltration following fractures. By administration of 3-5 drops of Vigantol daily the healing time of fractures may be shortened even in old people. A careful dosage is imperative, however, since toxic doses may provoke demineralization and thus have an opposite effect.

Generally known is the importance of Vitamin D in the formation of teeth in children. Rachitic teeth, which give evidence throughout life of
recovery from an avitaminosis, are not so rarely seen. Purely by experi-
mental means a very rapid regeneration of the supercalcified dentine has
been observed with local application of Vigantol. Aside from Vitamin D
the value of other vitamins has been stressed and that of Vitamin C in
particular.

Vitamin D in Allergic Diseases. Vigantol is recommended furthermore,
either alone or with calcium in all diseases in which an increase of the blood
calcium level is desired. The rise of this level continues longer if Vigantol
is given at the same time. Very good results have been reported from com-
bined calcium-Vigantol treatment in allergic diseases such as bronchial
asthma and hay fever. In diseases of the vegetative-endocrine system, as
in the thyrotoxicoses and in asthenic patients with more or less hyperthyro-
tic tendencies, the results of this treatment are allegedly entirely satisfac-
tory. In all of these cases intravenous injections of calcium are given with
5 drops of Vigantol per os. In allergic conditions, action may be obtained
with Vigantol alone if toxic doses are given.

Vitamin D and Tuberculosis. There has been much contention about
the Vitamin D effect in tuberculosis, in which recently, a disturbance of the
mineral metabolism was also discovered. As a supporting measure Vigantol
in doses of 3-5 drops is said to exert a favorable general effect in every
form of tuberculosis, appearing specifically in increase of weight and im-
proved appetite. Moreover, some authors have reported that pure Vitamin
D may act favorably in preventing pulmonary hemorrhages and in promot-
ing calcification of progressive processes. Especially in tuberculosis too
large doses must be cautioned against, for by overdosage it may easily
come to an undesired demineralization. Of very little uniformity are the
experiences made by investigating the relations between Vitamin D and
the resisting forces of the organism against infections. While some work-
ers have seen an increased resistance of the test animals against certain
infections following treatment with Vitamin D others have not been con-
vinced of a protecting effect of the vitamin. However, perusal of the work
submitted seems to indicate that Vitamin D, especially in combination with
the Vitamin B complex may effect a rise of resistance. In veterinary medi-
cine, in which the Vigantol treatment generally plays a large role, the
protective action of Vitamin D has been made use of extensively.

Vigantol Treatment of Leucorrhea. The Vigantol treatment of fluor
albus is well spoken of by gynecologists as a supporting agent. With cauti-
ous dosage and in combination with calcium and general dietetic measures
Vigantol is supposed to act favorably, especially in non-specific leucorrhea
in smaller girls.

Vigantol Treatment of Eczema. In eczema of children Vigantol oint-
ment has been quite effective, but improvement has also been obtained with
the same treatment in adults. In acne rosacea the results of parenteral
administration of Vigantol are said to be similar to those of the cod liver
oil injections of Unna (Strafke).
Vitamin D Content of Some Foodstuffs

(in γ per 100 gm. of substance; 1 γ equals 0.001 milligrams)

<table>
<thead>
<tr>
<th>Sea Food</th>
<th>Milk—Butter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herring</td>
<td>0.14</td>
</tr>
<tr>
<td>Sardines</td>
<td>0.14</td>
</tr>
<tr>
<td>Herring, smoked</td>
<td>0.14</td>
</tr>
<tr>
<td>Sprats</td>
<td>0.14</td>
</tr>
<tr>
<td>Oysters</td>
<td>0.16</td>
</tr>
<tr>
<td>Eggs</td>
<td></td>
</tr>
<tr>
<td>Egg yolk</td>
<td>20.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fats and Oils</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cod liver oil</td>
<td>40 - 400.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Edible Fungi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mushrooms</td>
<td>0.14</td>
</tr>
<tr>
<td>Morels</td>
<td>0.14</td>
</tr>
<tr>
<td>Puff Balls</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Bibliography for Vitamin D

- Bond, Lancet II, 328, 1929.
- Brockmann and Chen, Hoppe-Seylers, Zschr., Bd. 241, H. 1, 2 and 3, S. 129, 1936.
- Collazo, Paidoterapia Nr. 113, S. 575, 1931.
- Demole, Christ, Arch. exp. Path. 146, 361, 1929.
- Drummond, Biochemical Journal 20, 1229, 1926.
- Goldblatt and Soames, Biochemical Journal 17, 294, 297, 1923.
- Guggisberg, Die Bedeutung der Vitamine fur das Weib., 1935.
- Harris and Moore, Biochemical Journal 5, H. 22, S. 1461.
- Hesse, Klin W., Nr. 12, 1933.
- Holtz, D. m. W., Nr. 15, S. 560 and Nr. 48, S. 1830, 1934.
- Hulsdinschinzy, D. m. W., 45, 712, 1919.
- Kreitmaier and Moll, N. m. W., Nr. 40, S. 1688, 1931.
- Laquer, D. m. W., Nr. 6, S. 243, 1931.
- Page, Biochem. Z. 220, 420, 1930.
CHAPTER FIVE

VITAMIN E

Introduction. For normal function of the sexual organs and attainment of optimal fertility in rats provision of a specific vitamin—the antisterility Vitamin E—is necessary. That information was published in 1923 by Sure and Evans, but if this vitamin is also required by man, it has not been established with certainty. Manifestations of a Vitamin E deficiency are not known in man. Though it has been demonstrated in recent years that Vitamin E concentrates in various diseases of the genital sphere, definitely not due primarily to vitamin deficiency, have obvious curative effect, that is not proof of a vital importance of this vitamin for the human organism, for the vitamins are not only (at least for part of the mammals) essential accessory foodstuffs, but independently thereof exert curative activity even in diseases which are not avitaminoses. This second mode of action appears to be present in Vitamin E in a marked form. The non-existence of human avitaminoses E may possibly be connected with the fact that this vitamin is more extensively dispersed in Nature and that it is more resistant to the effects of Kitchen-processing than other vitamins. Whatever we know today of the physiology of Vitamin E and of the symptoms of avitaminosis E, we are chiefly indebted to the extensive investigations of Evans (1926-1928). Biological research of the Vitamin E problem has not made any essential progress, except that recent studies seem to indicate that Vitamin E consists of two divisional factors, one being indispensable to the male and the other to the female organism.

Chemistry. Vitamin E in the purest form so far produced exhibits a colorless, or pale yellow viscous oil, soluble in alcohol and ether, but not in water. Its chemical composition corresponds best to the formula C_{28}H_{50}O_{2} (eventually C_{28}H_{48}O_{2}) (Drummond-Singer-MacWalter). Its properties indicate that it is a polycyclic alcohol which approaches the triterpenes (lano- stearin and amyrin C_{30}H_{50}O, betulin C_{30}H_{50}O_{2}). Amyrin frequently accompanies Vitamin E at its natural sources. Vitamin E is very resistant to heat (200°); and by alkalies and acids, catalytic hydration (even under greatest pressures) it is not destroyed; neither is it destroyed in pure state by oxygen, but it is decomposed if the fats in which it is held in solution become rancid (Olcott) or if heavy metals are present in lipid-soluble form (Waddell-Steenbock). Against this inactivation Vitamin E is protected in Nature by “antioxygenetic” associated substances of a phenol character (Cummings-Mattill). Its molecule contains probably three double compounds and one OH group. Vitamin E acetate and benzoate are equally effective as the unesterized vitamin and moreover insensitive to
rancidity. In Nature Vitamin E very likely occurs also in this esterized form. Contrary to older perceptions it has no relation to xanthophyll.

Determination. The difficulty of the determination of the Vitamin E content of foodstuffs is aggravated by the inadequacy of the test methods so far worked out. Specific chemical reactions are not known. The biological determination is round about and time-consuming, extending of necessity over two generations, the Vitamin E depots of the organs being very slowly depleted and then because of the widely spread results, it yields suitable values only when applied to animal material. The usual test procedures are curative and prophylactic. In the classic curative test of Evans, female rats are fed Vitamin E-free diets until resorption sterility occurs. Thereafter on the day of a mating a single dose of the substance to be investigated is fed and the course of gestation is observed. One may also try to ascertain the prophylactic quantity which guarantees a normal gestation and a normal number of offspring (Evans) or prevents paralysis (Ringsted). To frame a term for the Vitamin E unit has not been possible as yet. At present it must suffice to indicate the Vitamin E content of foodstuffs by the quantity necessary to prevent sterility.

Occurrence. The following table shows the occurrence of Vitamin E in Nature.

<table>
<thead>
<tr>
<th>Material</th>
<th>Relative Vitamin E Activity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef Muscle</td>
<td>20</td>
</tr>
<tr>
<td>Beef Liver</td>
<td>10</td>
</tr>
<tr>
<td>Placenta</td>
<td>25-100</td>
</tr>
<tr>
<td>Hypophysis, Anterior Lobe</td>
<td>25-100</td>
</tr>
<tr>
<td>Lard</td>
<td>20</td>
</tr>
<tr>
<td>Egg Yolk</td>
<td>17</td>
</tr>
<tr>
<td>Water Cress (at least)</td>
<td>50</td>
</tr>
<tr>
<td>Green lettuce</td>
<td>40</td>
</tr>
<tr>
<td>Green Vegetables</td>
<td>40</td>
</tr>
<tr>
<td>Peas</td>
<td>25</td>
</tr>
<tr>
<td>Peanuts, raw</td>
<td>100</td>
</tr>
<tr>
<td>Wheat Germs, dry</td>
<td>400</td>
</tr>
<tr>
<td>Bananas</td>
<td>3</td>
</tr>
<tr>
<td>Yeast</td>
<td>0-20</td>
</tr>
</tbody>
</table>

Vitamin E is also found in barley, oats, rice, coconut, cotton seed, palm linseed and soja oils, butter and milk. Flour is Vitamin-E free.

Requirement of Man. The kinds of animals in which proof of indispensability of Vitamin E has been established are rats, mice, chickens (Gard, Ender). The honey bee develops into a queen only when it receives Vitamin E-containing food. Larvae of the working bee are nourished Vitamin E free (Hill-Burdet). Since the tendency to abortion in cattle, sheep and swine may be removed by Vitamin E concentrates, there must exist an E requirement in these animals also; it has not been definitely proven, however. In rats a daily supplement of 0.1 mg. (in form of the highly purified

* Relative Vitamin E activity equals 100/sterility-preventing minimum doses in grams.
preparations of Drummond-Singer-MacWalter) suffices to maintain normal fertility. About the magnitude of the human requirement nothing is known. A hypervitaminosis E is unknown.

Behavior of Vitamin E in the Organism. The supplied Vitamin E is stored in the organs, most in those pertaining to the female sexual sphere (placenta, hypophysis, anterior lobe) and then in muscle, pancreas, spleen, less in liver, not in kidney and brain. According to Zagami also testes and semen contain Vitamin E. Depletion of these depots proceeds very slowly in Vitamin E deficiency, but in fully developed avitaminosis E these organs are Vitamin E-free. The assumption that Vitamin E might be a precursor of prolan is lacking in proof so far.

Symptoms of Avitaminosis E. The manifestations of Vitamin E deficiency are fundamentally different in both sexes. In the male histologically demonstrable lesions appear quite early, becoming irreparable when the avitaminosis is fully developed. Manifest organic changes (except increase of basophilic cells in the hypophysis) in the female have not been observed and the disturbances in the course of gestation may be relieved at any time by supplementing Vitamin E. In the male sexual organs the beginning of avitaminosis E is presaged by azoospermia and degeneration of the spermatozoon. Later atrophy of the seminal tubules occurs leading to sterility. Finally, it comes to an irreparable loss of spermatid nuclei, with formation of giant cells and liquefaction. The Vitamin E-free-fed female always remains conceptive, carrying out the first gestation normally, providing the conception occurs at the beginning of the avitaminosis; however, even in this case, the rearing of the young is often refused. Sometimes in the first gestation stillbirths appear; in the second, only a few dead young ones are brought forth; in the third, intrauterine resorption of the fetus and placenta occurs. Spontaneous deciduomata have been observed. Outside of the sexual sphere avitaminosis E manifests itself in muscular dystrophies (C. Mueller—Pappenheimer) and paralysis of the extremities (Ringsted). Young Vitamin E fed female rats may also exhibit pareses (Evans-Burr). In the stomach wall an undefined cell growth resembling malignancy has been seen by Adamstone.

Commercial Preparations. The following preparations are highly concentrated and have been tested in animal experiment and in the clinic and may be given perorally or parenterally: The German “Vitamin E Promonta”, the English Feritol (Vitamin Lts., London W4) and the Danish “Fertilan MCO”. A schedule of dosage cannot be submitted.

Clinical Application of Vitamin E. Experiences gathered thus far from the therapeutic application of Vitamin E in man do not allow of definite conclusions in any direction and may only be looked upon as guides. That deficient nutrition is liable to give rise to menstrual disturbances, sterilities and genital hypoplasias, has been shown by Bauer and Macomber, but these manifestations off hand may not be referred to as E deficiency, Vitamin A likewise being required for normal function of the sexual organs. Juhasz-Schaeffer have obtained good results with Vitamin E concentrates in sexual weakness, azoospermia, sterility in man, and then in hypogalactia and especially evident in retarded menarche, but none in menstrual disorders.
The discoveries of Juhász-Schaeffer and Vogt Möller made on a relatively large clinical group give promising prospects for Vitamin E in the prophylaxis and therapy of habitual abortion and in the treatment of primary sterilities of women. Gierhake has recommended Vitamin E treatment in the tendency to premature births and generally in functional disturbances of propagation, especially if an alimentary deficit is suspected.

BIBLIOGRAPHY FOR VITAMIN E

Albrecht, M. m. W., 1319, 1936.
Eymer, M. m. W., 1940, 1936.
Saphir, Endocrinology 20, 107, 1936.
Simonnet, Monde méd., 810, 1936.
Vogt-Möller, Hospital Tidings, 621, 1933.
CHAPTER SIX

VITAMIN H

Introduction. First discovered in 1927 by Miss Boas under the name of "Factor X", it was recognized by Györgyi (1931) as an essential factor in the diet of man and designated by him as "skin factor". Judging from what little is known, it is an indispensable accessory factor for the child in particular, differing essentially as to properties as well as to physiological action from other vitamins. Vitamin H is required for the normal evaluation of fats and certain protein bodies, and in the metabolism of these substances it has to fulfill certain functions, the nature of which are not known in detail.

Chemistry. Vitamin H is distinguished from other accessory factors in that in its natural state of occurrence it is insoluble in water as well as in ether, alcohol and fats, but is firmly fixed to the insoluble organic basal substance of foodstuffs (probably to protein). Only the proteolytic-splitting processes in the intestine, or the papain hydrolysis in vitro, effect a liberation of the Vitamin H factor from its compound and make possible its absorption. Thus, it is explained that extracts of untreated raw material containing Vitamin H (liver or yeast extracts) do not develop Vitamin H activity. The manufacture of pure Vitamin H has not been successful as yet, but may be expected in the near future, since highly potent extracts extensively freed of ballast matter are available. Vitamin H (freed according to Lease-Parsons by papain digestion of residue of extracts of liver) is itself heat-resisting, soluble in water, but not in alcohol and benzine, contains nitrogen, but no sulphur. Its chemical nature is unknown; it is perhaps an amino acid (Gorter).

Determination. The determination of the Vitamin H content of food is obtained by the curative rat test. When animals fed on a certain deficiency diet of much egg white and olive oil for 4 to 6 weeks have developed a status seborrhoeicus, they receive each day the same supplementary dose of the substance to be investigated. Hypodermic injection of the material is also possible, providing it is previously subjected to a proteolytic exfoliation. On the administration of the substance under observation if Vitamin H is present, crusts and scales are thrown off in a short time, spots of skin with secondary infection clear up, and the skin becomes smooth and hair starts growing. The newly grown hide usually contains more pigment, is stronger and more shiny than the old. This curative effect is so constant that a standardization of the Vitamin H factor is made possible. A rat unit (preliminary) is designated as that quantity of bio-
logically active substance, which by being administered every day subcutaneously to rats ill of an avitaminosis H, has the power to cure them completely within 4 weeks. The purest preparations of Gyorgyi contain 1 rat unit in 5 Greek gamma (= .000005 gm.) of substance. It has been learned that on the average the requisite peroral dose is five times greater than the corresponding subcutaneous one.

Occurrence. The following table will give information on the Vitamin H content of some foodstuffs.

<table>
<thead>
<tr>
<th>Material</th>
<th>Subcutaneous Rat Units per 100 gm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver (beef, hog)</td>
<td>1000</td>
</tr>
<tr>
<td>Kidney, beef</td>
<td>1000</td>
</tr>
<tr>
<td>Kidney, hog (cooked)</td>
<td>2000**</td>
</tr>
<tr>
<td>Yeast</td>
<td>200-250</td>
</tr>
<tr>
<td>Mother's milk</td>
<td>25</td>
</tr>
<tr>
<td>Cow's Milk, summer</td>
<td>50-100</td>
</tr>
<tr>
<td>Cow's Milk, winter</td>
<td>25</td>
</tr>
<tr>
<td>Potato Meal</td>
<td>160-250</td>
</tr>
<tr>
<td>Casein</td>
<td>160-250</td>
</tr>
<tr>
<td>Brain</td>
<td>160</td>
</tr>
<tr>
<td>Bananas</td>
<td>100-125</td>
</tr>
<tr>
<td>Muscle, thymus, spleen, skin, wheat flour, rice, corn</td>
<td>0</td>
</tr>
</tbody>
</table>

Vitamin H factor is also found in fair quantity in green vegetables, spinach and cabbage, in blood serum (Boas) and egg yolk (Gorter). Pork and linseed oil are Vitamin H free (Parsons). So is whey (Heiman) and all commercial liver and yeast extracts [(Campolon, Lilly 343) Cenovis extract, Marmite, Vitox]. The usual household cooking increases the Vitamin H content in liver and kidney (Parsons-Lease-Kelly). In the potato the vitamin is bound to the starch; there is none in the juice. Compared to cow's milk, the low Vitamin H content in mother's milk is noteworthy. The distribution of Vitamin H, as the table shows, is rather limited.

Requirement of Man. The Vitamin H requirement rises proportionately with the body weight, and therefore does not present a constant magnitude. According to Gyorgyi it amounts to about 50 subcutaneous rat units per kilogram weight. Prophylactic and therapeutic doses appear to be the same, so the Vitamin H requirement of adults is about 3500 units daily. In view of this high value and the sparse occurrence of the Vitamin H factor in Nature, it was suggested that the conditions of Vitamin H deficiency were wider spread than it was so far assumed to be. It must be considered on the other hand that the Vitamin H requirement varies parallel with the supply of egg white and fat and that it is probably less with a fat-free diet as indicated. Up to the present an avitaminosis H is not known, although the Vitamin H factor is indispensable not only for man and the rat, but also for the chicken (Norris-Ringrose).

* The number of subcutaneous units were calculated from the daily curative unit with peroral administration based upon the fact that 1 subcutaneous unit equals 5 peroral units.

** According to Parson-Lease-Kelly.
Behavior in the Organism. From the abundant Vitamin H content of liver and kidney it follows that the Vitamin H consumed is stored solely in both of these organs. The absence of the skin-factor H in the skin is worthy of note. Diarrheas and dyspeptic phenomena, impeding the proteolytic liberation and assimilation of Vitamin H, predispose to manifestations of Vitamin H deficiency (status seborrheicus). The fetal organism at birth does not contain any Vitamin H reserves and so it is explained that manifestations of a Vitamin H deficiency are observed immediately after birth. The vitamin also is allegedly percutaneously resorbable.

Manifestations of Vitamin H Deficiency. That an absolute or relative Vitamin H deficiency occurs in Vitamin H-poor nourished rats has been frequently observed by English and American authors during the past decade. For example, with an over-feeding of egg white, inflammatory, in part pellagra-like, skin changes develop. However, it is to the credit of Györgyi to have established the fact in 1931 that the clinical syndrome of avitaminosis H in the rat had nothing to do with pellagra, but was in every respect analogous to the human status seborrheicus. The first signs of Vitamin H deficiency in the rat are cutaneous inflammations about the mouth, blepharitis, intertrigo-like spots in the axillae, inguinal folds and urethra, prurigo and loss of hair, then redness appears and oozing of the skin, formation of scales and spreading of crusty yellow masses. Finally there is added a fine scaly desquamation over the whole body in the form of a “jacket of scales”. Secondarily, as in the equivalent human disease, pyoderma, mucous and skin ulcers, septo-pyemic disease, pneumonias, and even keratomalacia may develop. The histological picture exactly likens the seborrhea of man. The differentiation between pellagra and Vitamin-H-avitomotic skin symptoms, usually plain in the rat, does not obtain in the chicken. Vitamin B₆ and Vitamin H deficiency symptoms appear the same in the chicken, and may be distinguished only by therapeutic results (Lease-Parsons). This, and the fact that Vitamin B₆ and Vitamin H deficiencies are often superimposed, has led to errors and wrong conclusions in the investigations of water-soluble vitamins.

Physiology of Vitamin H. The human status seborrhieicus is in every respect like the experimental rat seborrhea and must thus be interpreted as a manifestation of Vitamin H deficiency. It represents a pathologically changed-state of reaction. Its nature consists in an increase and abnormal composition of the sebaceous secretion and in a fatty degeneration of the superficial horny stratum of the epidermis, predisposing to development of skin infections. The disturbance of fat metabolism of the skin fundamental to seborrhea may be caused by a “too little” of Vitamin H, as well as by “too much” of egg white in the food, and moreover may be aggravated by a generous supply of fat. There are then close reciprocations between the avitaminosis H, the skin-fat-metabolism, and, as demonstrated in the rat and the human infant, the toxic effect of egg white. Thus, Vitamin H is concerned immediately with neutralizing the toxicity of egg white in the nutriment and later with the maintenance of a normal skin-fat-metabolism. Its function is enhanced by the fact that the skin-fat-metabolism is afforded relief by reduction of the fat supply. In regard to
the avitaminosis H problem it is of interest that Bateman as early as 1916 has warned against too generous a supply of egg white in the human diet.

In what manner the detoxication of the toxic factor of egg white occurs is not evident, nor is there anything known of the nature of the toxic factor. It is apparently of a protein character, since egg white is no longer toxic after being heated, acid denatured or proteolytically predigested. Precipitation with alcohol does not destroy it, but it is not identical with egg albumen.

Vitamin H has (perhaps because of the normalization of the changed "terrain") a pronounced anti-infections action (Gundel-Györgyi-Pagel). Besides, it seems to possess growth promoting faculties, for it is apparently identical with the "insoluble rat factor R" of Williams-Lewis and Hunt.

Commercial Preparations. Vitamin H preparations are not on the market as yet. Some German firms, however, have made available for test purposes highly purified Vitamin H concentrates in ampules (a 2 cc. ampule containing 1000 subcutaneous rat units) for intramuscular (also peroral and hypodermic) application. Dosage: 1 ampule daily for several weeks.

Indications for Vitamin H Therapy. 1. Status seborrheicus. The pronounced form of avitaminosis H and thereby the main field of application of Vitamin H therapy is the status seborrheicus of the nursing age—the first trimenon—with both of its types of manifestations, the dermatitis seborrheicus and erythematosa, and the generalized form of erythematous type, the erythrodermia desquamatos (Leiner). Pityriasis, intertrigo and dermatitis lichenoides must be included under phenomena of Vitamin H deficiency as specific manifestations of the nursling's seborrhea. The common base of all these disease manifestations is the seborrheic "change of terrain", consisting of a metabolic fault in the skin, disturbing the fat metabolism and the processes of cornification. 80% of all cases of seborrhea affect nursing children, because mother's milk contains less of the Vitamin H factor than cow's milk. However, seborrheic conditions may occur in bottle-fed children if they are undernourished or suffer from dyspepsias impeding the assimilation of the Vitamin H supplied. According to Moro there is a toxic egg-white effect associated with the development of avitaminosis H of the nursling. Particularly during the first three months of life a great permeability of the intestinal wall for uncatabolized egg white has been demonstrated.* Another form of seborrhea, likewise to be considered as a sign of a lack of Vitamin H, appears after the first trimenon and has been seen in children up to 10 years of age. This is the psoriasoid of Jadassohn and Tachau (seborrhoid-psoriasoid type of dermatitis seborrhoeica) which is often not properly diagnosed. It may result from inadequate nutrition (deficiency form) or it may be due perhaps to an endocrine imbalance in the sense of a diminished fat-tolerance and a correspondingly increased Vitamin H requirement (the constitutional form).

* In the nursling the egg white may not only act from within the intestine as a specific toxin, but also as a nonspecific agent. The frequent association of status seborrhoeicus and the genuine (allergic) eczema is thus explained.
The latter is closely related to the genuine psoriasis. Therapeutically Vitamin H is administered either through injections of pure Vitamin H concentrates, from the use of which Györgyi has seen good results, or through Vitamin H rich foods. And here liver has a prominent place, 25-30 gm. of cooked hog or beef liver is given daily to a nursing child. At the same time generous allowances of easily digestible albumen (in the form of casein, larosan, plasmon, but not of meat or egg white) should be made, because it serves as a Vitamin H carrier and checks diarrheas which inhibit Vitamin H resorption. In animal tests the Vitamin H treatment not only cures seborrhea, but also conditions resulting from it (especially pyogenic skin infections, keratitides), as well as incipient pneumonias and keratomalacias, which in this manner prove themselves as true symptoms of Vitamin H deficiency. Yeast has also been used successfully, but it must be given in very large quantities. The well-known results from yeast treatment of acne and furunculosis, conditions consequential to the seborrhoeic state of reaction, are based essentially upon the Vitamin H content of the yeast. Both affections are favorably influenced by injection of Vitamin H concentrates. In the adult the formation of baldness, providing it may be attributed to a basic seborrhea, belongs to the range of application of the Vitamin H factor. Experiences with Vitamin H treatment in these cases, however, are quite limited.

2. In older children from the status seborrhoeicus morphologic and genetic relations lead to psoriasis, relations justifying therapeutic application of Vitamin H. There is with it, as with the seborrhea, a disturbance of the skin-fat metabolism (Buerger, Gruetz) coupled with an unexplained toxic effect (intolerance) of the nutrient egg white ("dysproteinosis") (Samberger, Pular). That the two-fold metabolic disorder is present points to a deficit of Vitamin H. In the hands of Mancorps and Györgyi injections of Vitamin H concentrates have shown as good results in psoriasis as has administration of cooked liver as the Vitamin H source (350 gm. several times a week). As an adjuvant of this treatment a reduction of fat supply is to be advised (Gruetz).

3. In the etiology of pellagra, aside from the lack of the pellagra-protecting substance, there is a poisonous effect of certain toxins arising in spoiled foodstuffs, particularly in corn (Chick). This indicates that in the genesis of pellagra Vitamin H deficiency is also of importance, particularly because the pellagra-protecting factor and Vitamin H usually coexist, and because the foodstuffs successfully used in the treatment of pellagra (liver, yeast, cow's milk) are likewise good sources of Vitamin H. In animal experiments the possibility of superposition of Vitamin B₂ complex and Vitamin H avitaminoses is also frequently presented (Györgyi). Thus, perhaps is explained the fact that occasionally egg-white dermatitis has been confused with rat pellagra. At least, it is commendable in pellagra, not only to supply an abundance of foodstuffs containing Vitamin H given anyhow for their Vitamin B₂ complex content, but also to resort to parenteral application of Vitamin H concentrates when intestinal disturbances obtain, impeding Vitamin H assimilation.

4. The diverse successes reported from injection treatment with Vita-
min H concentrates in alopecia areata and genuine (allergic) eczema are without any theoretical foundation. From animal tests it is evident furthermore that the parenteral Vitamin H therapy may also be drawn upon to support local treatment of parasitic skin diseases. The curative action of the Vitamin H factor in all these skin affections confirms the truth of the statement that the vitamins are not only accessory supporting substances, but may also exert curative effects in lesions of a non-avitaminotic nature (Stepp).

In all cases where Vitamin H therapy is to be practiced in adults, attention must be paid to support the parenteral with a dietetic supply of Vitamin H (in the form of liver, kidney—twice weekly 250 mg., milk and vegetables) and to restrict meat, fat and egg consumption.

BIBLIOGRAPHY FOR VITAMIN H

Gorter, Z. Vitaminf. 1, 5, 1936.
Lease, Z. Vitaminf. 5, 110, 1936.
Milbradt, Dermat. Wschr., 1376, 1402, 1936.
Moncorps, Dermat. Wschr. 1230, 1936.
Schmid, Archives of Dermatology, 175, 344, 1937.
Schreus, Dermat. Wschr., 1231, 1936.
Schubert, ebenda.
Schultz, Medzin u. hemie, 3, 143, 1936.
CHAPTER SEVEN

VITAMINS AND HUMAN NUTRITION

Only a few years ago there was relatively little known about the import of the vitamins for the human economy. Many results of investigation in vitamin research of recent times seemed to hold more of experimental interest than of importance for human dietetics. Very soon therefore after the discovery of vitamins and even more in recent years overestimating the value of vitamins has been warned against, from various sides. Thus it was maintained that with an ordinary mixed diet the danger of an avitaminosis did not exist in any manner whatsoever. Purity and synthesis of the most important vitamins having been established, there resulted not only an insight into the essence of the vitamins, but also new possibilities of a rational treatment or prevention of deficiency diseases came to hand.

Another advantage not to be underestimated practically consists in the opportunity to express the food content not only in biological units, but also plainly in weight, at least in reference to the vitamins already set up in pure form. The objection that the rarity of avitaminoses, even in patients on a limited diet, speaks for an adequate supply of vitamins, is invalidated by the newly gained knowledge of the nature and frequency of hypovitaminoses, previously discussed under the separate vitamins.

Clinical syndromes of indefinite character arise when the supply of vitamins or vitamin does not proceed in proportions or quantity corresponding to optimal conditions. Under such circumstances the classical signs of the known avitaminoses do not appear, but the relative vitamin deficiency makes itself noticeable in numerous frequently ill-defined disturbances. Very recently Frederiksen examining a series of school children in Copenhagen has found, for example, a remarkably frequent appearance of latent scurvy. The only symptoms of a hypovitaminosis C he often found were anorexia and an insignificant hematuria.

According to Castle and Strauss there are relations between pernicious anemia and the B₂-complex. Also in all probability it more frequently comes to a hypovitaminosis with B₂-complex, because of the great spread between the merely adequate and the optimal provision of the necessary vitamin quantities, as has been generally assumed. Finally it has been pointed out by Stepp, that a deficient vitamin supply might only manifest itself in the offspring, as M. B. Schmidt has demonstrated in mice with an iron-poor diet. That mutations may develop must also be thought of. Hence it appears from these suggestions that in the future still more...
clinical syndromes will be counted as belonging to the range of hypovitami-
minoses, the relations of which to the vitamins are still unknown today.
One difficulty, however, consists in the fact that with uncharacteristic
symptoms of the hypovitaminoses the connections are often hard to clarify,
since a diagnosis ex juvantibus is not satisfactory.

It is therefore not so important to obtain exact information as to
intake of vitamins in figures, as it is imperative that the quantities be in
keeping with certain optimal proportions of the total quantity of the
food. This dependence is proven especially for B_1, the supply of which
must be more generous, the greater the quantity of carbohydrates taken
up with the nourishment. Matters are similar in regard to relation of
vitamins and mineral metabolism. It is known that in case of rickets the
requirement of Vitamin D is the greater the more the proportion of
phosphoric acid and calcium is removed from the normal.

The conditions which may favor development of a hypovitaminosis or
avitaminosis, even if the food is not particularly vitamin-poor, are there-
fore quite numerous. It is self-evident that a primary vitamin deficiency
in the nutriment plays a role in bringing them about. Too little notice
has been taken of the fact that every bland diet also presents a limited
nutrition, because many vitamin containing food-stuffs must be discarded
for their incompatibility to the patients. In fact during long continued
restricted diets avitaminoses have occurred. Morawitz, for instance, has ob-
served the appearance of scurvy in a typhoid patient, who was fed almost
solely on mush and gruel. In cases of dysentery, gastric ulcer, fistula and
colitis avitaminoses have been seen. How much an adequate provision of
vitamin is warranted, is unknown. To progress with this question it is
necessary to learn, at least approximately, the vitamin content of a diet.
Such a calculation was done by us for the most commonly used diet forms.
In the main those diets were considered, which are employed at the first
medical clinic of the hospital l.d.l. in Munich.
CHAPTER EIGHT

DAILY VITAMIN REQUIREMENT FOR MAN

Vitamin A minimal 1 mg. carotin
optimal 3—5 mg. carotin (not exactly known)

Vitamin B₁ minimal 0.25—0.5 mg. crystalline B₁
optimal 1.00—2.0 mg. crystalline B₁

Vitamin B₂ minimal 1 mg. crystalline lactoflavine
optimal 2—3 mg. crystalline lactoflavine (in presence of Vitamin B₄)
Requirement of the rest of the B-factors unknown

Vitamin C minimal (and at the same time the lower border of the optimum)
nursing infant 2.5 mg. crystalline ascorbic acid
adults 20-50 mg. crystalline ascorbic acid

Vitamin D Nursling and infant
minimal 0.002 mg. crystalline D₂ (calciferol new)
optimal (minimum in rickets) 0.01 mg. D₂
Adult requirement unknown, not much higher however

Vitamin E Requirement unknown

Aided by this table indicating the approximate vitamin requirement of normal man, we find it possible to judge whether a vitamin deficit exists in one of the diets presented. With these figures it is well to consider that they afford only an approximate indication pertaining to a healthy individual.

Since special diets are applied to sick people, these matters deserve particular consideration. There are two factors to be considered, first restricted vitamin supply in the diet, second increased vitamin consumption due to the disease, either one in itself being apt to produce vitamin deficiency. It must be conceded, therefore, that a diet of a vitamin content rated as just sufficient normally must be considered inadequate in a certain disease.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bland diet Krankenhaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.d.I</td>
<td>11-67</td>
<td>250-480</td>
<td>1-2</td>
<td>5.2-6.5</td>
<td>41-51</td>
</tr>
<tr>
<td>Transduodenal feeding</td>
<td>4.6-56</td>
<td>190-340</td>
<td>1.1-1.8</td>
<td>15-30</td>
<td>21-22</td>
</tr>
<tr>
<td>Gastritis diet Krankenhaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.d.I</td>
<td>9-66</td>
<td>250-320</td>
<td>3.5-5.5</td>
<td>38.5-65</td>
<td>41-45</td>
</tr>
<tr>
<td>Ulcer diet Kalk 4th day</td>
<td>0.15-1</td>
<td>20-30</td>
<td>0.1-0.15</td>
<td>0.5-1</td>
<td>0.2-0.4</td>
</tr>
<tr>
<td>5th day</td>
<td>0.3-2</td>
<td>40-60</td>
<td>0.2-0.3</td>
<td>1-2</td>
<td>0.4-0.8</td>
</tr>
<tr>
<td>6th day</td>
<td>3.5-28</td>
<td>160-280</td>
<td>0.2-1.5</td>
<td>1.5-3</td>
<td>20</td>
</tr>
<tr>
<td>7th day</td>
<td>6.3-53</td>
<td>260-440</td>
<td>1.3-2.5</td>
<td>1.5-3</td>
<td>40</td>
</tr>
<tr>
<td>8th day</td>
<td>6.5-53</td>
<td>280-500</td>
<td>1.3-2.5</td>
<td>2-4</td>
<td>40</td>
</tr>
<tr>
<td>15th day</td>
<td>11-152</td>
<td>520-760</td>
<td>2-4</td>
<td>10.5-20</td>
<td>61-72</td>
</tr>
<tr>
<td>23-27th day</td>
<td>22-100</td>
<td>660-840</td>
<td>6-9.5</td>
<td>25-40</td>
<td>61-72</td>
</tr>
<tr>
<td>Ulcer diet Leube-Ewald</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st day</td>
<td>12-8</td>
<td>160-220</td>
<td>1</td>
<td>4-8</td>
<td>1.6-3.2</td>
</tr>
<tr>
<td>2nd day</td>
<td>1.5-10</td>
<td>200-280</td>
<td>1.1-6</td>
<td>5-10</td>
<td>2-4</td>
</tr>
<tr>
<td>3rd day</td>
<td>1.7-12.5</td>
<td>200-280</td>
<td>1-1.5</td>
<td>5-10</td>
<td>2-6</td>
</tr>
<tr>
<td>4th day</td>
<td>1.8-14</td>
<td>200-280</td>
<td>1-1.5</td>
<td>25-35</td>
<td>2-6</td>
</tr>
<tr>
<td>5th day</td>
<td>5.40</td>
<td>280-480</td>
<td>2</td>
<td>40-65</td>
<td>22-28</td>
</tr>
<tr>
<td>6th day</td>
<td>8-65</td>
<td>400-680</td>
<td>2-3</td>
<td>40-65</td>
<td>42-48</td>
</tr>
<tr>
<td>7th day</td>
<td>11-93</td>
<td>520-880</td>
<td>3-4</td>
<td>5-10</td>
<td>62-70</td>
</tr>
<tr>
<td>8-15th day</td>
<td>11-93</td>
<td>520-880</td>
<td>4</td>
<td>11-27</td>
<td>62-70</td>
</tr>
<tr>
<td>Dyspepsy fermentative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 period</td>
<td>10-76</td>
<td>320-620</td>
<td>1.5-3</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>3 & 4 period</td>
<td>13-101</td>
<td>360-660</td>
<td>1.2-1.4</td>
<td>172-241</td>
<td>60-65</td>
</tr>
<tr>
<td>Ketogenic diet acidotic</td>
<td>4-37</td>
<td>140-240</td>
<td>3-4.5</td>
<td>20-30</td>
<td></td>
</tr>
<tr>
<td>Cystopyelitis alkalotic</td>
<td>5-15</td>
<td>240-640</td>
<td>1.2-2.4</td>
<td>172-241</td>
<td>1.2-2.4</td>
</tr>
<tr>
<td>Diet</td>
<td>Range</td>
<td>Range</td>
<td>Range</td>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Nephritic diet Karrel</td>
<td>1-8</td>
<td>160-220</td>
<td>1</td>
<td>4-8</td>
<td></td>
</tr>
<tr>
<td>Nonnenbruch</td>
<td>9-50</td>
<td>140-220</td>
<td>0.6-1</td>
<td>185-217</td>
<td></td>
</tr>
<tr>
<td>Vollhard</td>
<td>8.7-7.5</td>
<td>300-520</td>
<td>4.6-5</td>
<td>22-28</td>
<td></td>
</tr>
<tr>
<td>v. Norden 1</td>
<td>1.0-27.5</td>
<td>40-70</td>
<td>0.5-1</td>
<td>122-248</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>14-87</td>
<td>160-240</td>
<td>0.8-1.8</td>
<td>152-288</td>
<td></td>
</tr>
<tr>
<td>Mushfruit days Schlayer</td>
<td>0.9-6</td>
<td>120-160</td>
<td>0.7-1.4</td>
<td>13-60</td>
<td></td>
</tr>
<tr>
<td>Raw food days</td>
<td>26-240</td>
<td>600-920</td>
<td>1.7-3.3</td>
<td>450-550</td>
<td></td>
</tr>
<tr>
<td>Diet Gerson</td>
<td>93-360</td>
<td>1200-1600</td>
<td>2.4-4.6</td>
<td>440-510</td>
<td></td>
</tr>
<tr>
<td>Diet Hermannsdorfer</td>
<td>16-75</td>
<td>120-400</td>
<td>6-10</td>
<td>170-190</td>
<td></td>
</tr>
<tr>
<td>Apple diet</td>
<td></td>
<td></td>
<td>0.2-0.8</td>
<td>25-150</td>
<td></td>
</tr>
<tr>
<td>Banana diet</td>
<td>7.4-54</td>
<td>300-520</td>
<td>2.5-4</td>
<td>61-82</td>
<td></td>
</tr>
<tr>
<td>Reducing diet Umber</td>
<td>10-27</td>
<td>300-330</td>
<td>7.3-11.3</td>
<td>82-147</td>
<td></td>
</tr>
<tr>
<td>Richter</td>
<td>5.4-29</td>
<td>330-500</td>
<td>5.3-9</td>
<td>69-131</td>
<td></td>
</tr>
<tr>
<td>Branting</td>
<td>2-4.5</td>
<td>250-260</td>
<td>11-17</td>
<td>77-85</td>
<td></td>
</tr>
<tr>
<td>Forced alimentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High caloric Pariser</td>
<td>29-193</td>
<td>440-2880</td>
<td>5.3-8</td>
<td>175-356</td>
<td></td>
</tr>
<tr>
<td>High Caloric Bormtraeger-Schall</td>
<td>39-61</td>
<td>1600-3800</td>
<td>6.6-11.3</td>
<td>170-353</td>
<td></td>
</tr>
<tr>
<td>Diet for pernicious anemia Minot & Murphy</td>
<td>36-150</td>
<td>360-640</td>
<td>5.3-8</td>
<td>175-356</td>
<td></td>
</tr>
<tr>
<td>Diet cholesterol free</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krankenhaus 1.d.I.</td>
<td>13-36</td>
<td>130-200</td>
<td>0.2-0.7</td>
<td>240-290</td>
<td></td>
</tr>
<tr>
<td>Vegetable fat diet Petren</td>
<td>13-55</td>
<td>160-280</td>
<td>0.6-1.3</td>
<td>90-110</td>
<td></td>
</tr>
<tr>
<td>Oatmeal cure v. Norden</td>
<td>4.5-75</td>
<td>10-20</td>
<td>0.8-40</td>
<td>1.2-60</td>
<td></td>
</tr>
<tr>
<td>Diabetes-Falta soup diet</td>
<td>3-50</td>
<td>60-70</td>
<td>0.2-0.4</td>
<td>11-15</td>
<td></td>
</tr>
<tr>
<td>"-flour fruit diet</td>
<td>3.5-55</td>
<td>45-50</td>
<td>0.1-0.2</td>
<td>10-16</td>
<td></td>
</tr>
<tr>
<td>"-flour fruit vegetable</td>
<td>15-91</td>
<td>170-230</td>
<td>0.5-0.7</td>
<td>74-90</td>
<td></td>
</tr>
<tr>
<td>Hyperthyroidism Abelin</td>
<td>21-120</td>
<td>840-1280</td>
<td>3.8-5</td>
<td>132-210</td>
<td></td>
</tr>
<tr>
<td>diet</td>
<td></td>
<td></td>
<td></td>
<td>63-86</td>
<td></td>
</tr>
<tr>
<td>Gen. diet weekly average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>from July 22 to July 27</td>
<td>7.5-20</td>
<td>160-220</td>
<td>2.7-4.2</td>
<td>44-58</td>
<td></td>
</tr>
<tr>
<td>from Dec. 30 to Jan. 5</td>
<td>4-23</td>
<td>190-250</td>
<td>3.9-4.7</td>
<td>33-53</td>
<td></td>
</tr>
<tr>
<td>from Sept. 16 to Sept. 22</td>
<td>6-33</td>
<td>200-270</td>
<td>3-5</td>
<td>36-58</td>
<td></td>
</tr>
<tr>
<td>from Mar. 4 to Mar. 10</td>
<td>6-28</td>
<td>240-340</td>
<td>2.3-3.7</td>
<td>30-44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10-20</td>
<td></td>
</tr>
</tbody>
</table>
From a comparison of the vitamin content of different kinds of diet with the daily minimum human requirement of essential vitamins, as visualized by the table, it is evident that many forms of diet do not supply the organism with sufficient vitamins. A more detailed analysis indicates that Vitamin A and Vitamin D are abundantly represented in every diet. Only in some ulcer and nephritic diets, and then only during the first days when provision of calories per se is light, the values for Vitamin A and Vitamin D move below the normal line. A Vitamin C deficiency appears in the dietary far more frequently. In the beginning of all ulcer cures and in the regime of fermentative and flatulent dyspepsia an inadequate provision of Vitamin C may be demonstrated. The same holds true of the Karrel cure for the acidic part of the ketogenic diet in cystopyelitis. In almost all forms of dietary the provision of the necessary vitamins of the B-complex is very deficient. Pronounced especially are the low values of Vitamin B₁, which very rarely rise above the minimum requirement. Vitamin B₉ is better provided for. In the general diet 3rd. class Krankenhaus 1d. I Munich all vitamins except B₁ are present in sufficient quantities, the reason being that potatoes and meat, the main sources of Vitamin B₁ in our nutrition, must be supplied in pretty large quantities to cover the daily need of this vitamin.

It is remarkable that the Vitamin C requirement in the general ward diet is made up almost entirely by potatoes. It is generally known that a large part of our population is providing its need of Vitamin C with potatoes, thus living on the borderline of the minimum supply. It is evident that this limitation is fraught with certain danger. Indeed, in the past and also very recent times, epidemics of scurvy have been observed in connection with potato crop failures.

Another question is whether a diet with too low a value in vitamins might prove harmful to health if provided for a short time only. It is self-evident that the magnitude of the vitamin deficit and also the quantitative proportion of all vitamins play a role. Of guinea pigs it is known that after 8 days of C-free feeding they show histological changes in the teeth, even though clinically demonstrable signs of scurvy are absent.

It is evident that a general survey, as offered by the table, may only function as a guide for providing vitamins for the organism in the diet forms cited. Disregarding the fact that the exact vitamin requirement of a healthy man is not known as yet, the vitamin consumption is subject to great fluctuations in the different diseases. At any rate the calculations might suggest which of the dietary forms should be rearranged or supplemented in food respecting vitamins. The supply of the vitamin requirement is facilitated by the opportunity to apply them in their isolated form.

In view of the newly acquired knowledge of the frequency of hypovitaminoses and of the susceptibility of patients with avitaminoses to all sorts of diseases, the importance of a sufficient vitamin supply must not be underestimated in our patients. Concerning the nourishment of children it is of significance that through insufficient supply of vitamins injuries may arise in the organism, presumably never to be corrected, and that
many disturbances of health at a later age have their origin in an inadequate nutrition of the growing organism.

There is no doubt that the provision of sufficient quantities of vitamin in child and adult represents an essential aid in securing and maintaining complete health and optimal growth, which is the final goal of dietetics.
CHAPTER NINE

THE ANTAGONISM OF THE VITAMINS AND ITS IMPORTANCE IN VITAMIN THERAPY

In the discussion of the separate vitamins of the previous chapters the antagonism of the vitamins has been referred to ever and again. These relations are, as may be stated with assurance today, not only interesting theoretically, but also of greatest significance practically. Thus what is most important in the co- and counterplay of the vitamins will be briefly presented in the following.

To begin with, we know of an antagonism between the group of fat-soluble vitamins on the one side and the group of the water-soluble vitamins on the other. If rats, for instance, kept on a certain standard diet well suited for breeding purposes, receive a larger dose of cod liver oil daily, they grow ill, and additions of yeast remove the harmful effects of the oil (F. G. Hopkins). If guinea pigs on a scurvy-producing diet are protected against it by supplementing fruit juice, additions of cod liver remove the antiscorbutic action of the fruit juice (Mouriquand and Michel; von Euler).

When the opportunity to work with pure substances was realized during the recent years of advances in the manufacture of pure vitamins, these results were reinvestigated in detail. Thereby it became quite evident that the observation of Hopkins depended upon an antagonism between Vitamin A and the vitamins of the B complex. However, in detail one was forced to be convinced that the harmful action of an additional feeding of larger quantities of the pure Vitamin A could only be removed, if besides the Vitamin B Complex, Vitamin C were also given. Conversely it was demonstrated that the effect of the Vitamin B group could be impeded by a simultaneous administration of Vitamin A, and the action of Vitamin C entirely abolished by Vitamin A. These findings are in complete harmony with the tests of Mouriquand and Michel; von Euler. Furthermore, it is worthy of note that the toxic action of large doses of Vitamin D may be reduced by the Vitamin B Complex.

However, there exists an antagonism not only between the fat- and water-soluble vitamins but also within the group of the fat-soluble vitamins themselves. For instance it has been shown successfully that hypervitaminosis D may be prevented by simultaneous administration of large quantities of Vitamin A substances, and conversely, that signs of Vitamin
A deficiency may be provoked by an over abundant supply of Vitamin D. If the quantities of Vitamin A and Vitamin D substances remain within physiological limits, an antagonism is not debatable, indeed one may best justify the actual observations by speaking of a synergism in this case. There is no doubt that the apposition of calcium in the bones under the influence of Vitamin D is improved if small quantities of Vitamin A are added at the same time.

Thus in the relations between the vitamins the quantitative factor is directly of decisive importance. Looking about in Nature we find the ideal equilibrium realized between Vitamin A and Vitamin D in the natural product, namely cod liver oil, which proves the richest source of both these fat-soluble vitamins.

However, in liver oils that have been subjected to extensive chemical refining processes this proportion may be disrupted, because the more labile Vitamin A is destroyed easier than the more stable Vitamin D. It will be the problem of the future to study the quantitative connections of the vitamins in pure natural products. However, cod liver oil, little changed by chemical processes in refining, is perhaps superior to the artificial combinations of the pure vitamins solely for the reason that the resorptive conditions in the natural products are suitable. Of course, artificial products like Detavit, representing a mixture of Vitamin A and Vitamin D, may be so constituted that they satisfy the ideal postulate. Practical experience has proven Detavit to be eminently useful.

From the fact just stated, that there exists a vitamin equilibrium in the natural products, it seems imperative not to overestimate the existence of an antagonism. In addition, account must be taken, in these and other conditions, of the possibility that a diet may be poor in several vitamins at the same time. In such cases it is necessary to assay with great care to learn to know the specific deficiency of the nutriment in detail, procuring relief by adding the indicated vitamins. At any rate a more or less thoughtless "shot gun" treatment, as Americans express it, must be declined. Furthermore, in the question of the correlation of the vitamins or vitamin antagonism, it is of import that the vitamin requirement is not of a constant magnitude, but dependent in great measure, first upon the minerals contributed by the food (this holds especially for Vitamin D), and then upon the quantity of the main nutrients metabolized. It has been known for a long time that the Vitamin B₁ requirement rises with the quantity of carbohydrates metabolized, fat evincing a sparing effect. Evidently these interrelations are very important not only for the consumption of vitamins, but also for their activity and their reciprocations among each other. Still another phenomenon has to be considered—that there exists very close and weighty connections between the vitamins and hormones. Chiefly during recent years these connections have been most carefully studied. It is known, that the vitamins not only react upon the activity of the hormonal glands, but also influence the effect of the hormones, at times in a sense of synergism and then in that of antagonism. Best known is the antagonism between Vitamin A and thyroxin. It is
evident at once that with disturbances in the endocrine system the action of the vitamins may be entirely changed.

All these connections are of great practical importance or import for the reason that there is a possibility of doing harm with vitamin combinations not only in animal experiments but in bedside treatment as well. How easily a well-meaned "too much" may do injury is shown by a report from America about scurvy appearing in children, whose mothers, desiring to make the provision of vitamins most generous, administered orange juice and cod liver oil mixed.
APPENDIX
For the convenience of those who desire to make a study of any special phase of known deficiency reactions, we offer a recently compiled Vitamin Chart with detailed bibliography following (references up to October 1937).

By the publisher of the English Edition.
VITAMIN A

Apparent Function:
1. Necessary to normal function and integrity of—
 — Tissues of epiblastic origin;
 — Epithelial tissues (Wound healing hastened, resistance to infections raised);
 — Nervous system.
2. Necessary to maintenance of normal cell metabolism, such as:
 — Cell respiration;
 — Blood cell generation (Platelets).
3. Necessary to formation and integrity of periodontal tissue.
5. Essential to successful reproduction.
6. Prevents keratinization of tissues.

Possible Results of Deficiency:
7. Retarded appetite, growth and development (due to interference with assimilation).
8. Disturbed dental and bone development (atrophy).
9. Susceptibility to infections as well as slow healing of the following:
 — Reticulo-endothelium;
 — Epithelium, due to degenerative change in structures of skin and mucosa.
10. Presence (due to lowered resistance) of—
 — Infections of eye (corneal ulcers) and degeneration of eyes (xerophthalmia, keratomalacia, night blindness, total blindness);
 — Infections of ear (otitis media);
 — Infections of genitourinary tract;
 — Infections of mucous tract (tonsilitis);
 — Infections of respiratory tract (pneumonia, tuberculosis);
 — Infections of gastrointestinal tract (diarrhea);
 — Infections of sinuses.
11. Presence of keratinizations and metaplasia of—
 — Epithelium;
 — Genitourinary tract (making for difficult delivery of young);
 — Mucous tract;
 — Respiratory tract;
 — Glands.

12. Interference with successful reproduction and lactation (loss of sex impulse);
 — Sterility in the female by failure of ovulation or resorption of fetus;
 — Sterility in the male by temporary injury to seminiferous epithelium;
 — Prolonged gestation, retained and diseased placenta, difficult delivery.

13. Development of—
 — Pernicious anemia;
 — Secondary anemia;
 — Rickets (in conjunction with Vitamin D deficiency);
 — Gastritis;
 — Bronchitis;

14. Development of kidney and bladder disorders (metaplasias) and renal dysfunction;
 — Formation of stones (calculi);
 — Nephritis;
 — Cystitis;

15. Excessive growth of lymphoid tissue.

16. Degeneration of the nervous system—dulling or perversion of special senses.

Results of Absence:

17. Atrophy of organs and glands (testes, liver, spleen, thyroid, pituitary and salivary).

18. Degenerative skeletal muscle lesions develop.

19. Ophthalmia, xerophthalmia, keratomalacia, conjunctivitis or keratoconjunctivitis.

20. Death.
VITAMIN B

Apparent Function:

1. Stimulates and promotes appetite and normal digestion.
2. Promotes optimal growth (increases height and vigor).
3. Necessary to maintenance of normal metabolic processes such as:
 - Carbohydrate metabolism (lactic acid excesses);
 - Cell respiration;
 - Tissue respiration.
4. Necessary to normal pregnancy and lactation.
5. Maintains nervous function.
6. Stimulates digestive secretions, including insulin.
7. Necessary to maintenance of muscle tonus.
8. Prevents toxicosis from protein components in high meat diets.

Possible Results of Deficiency:

9. Susceptibility to infections due to lowered resistance.
10. Disturbed carbohydrate metabolism (Diabetes Mellitus) (lactic acid excesses, slow or labored respiration).
11. Functional disorders, atrophy or pathological enlargement of adrenals, brain, gonads, heart (heart block and bradycardia), kidneys, liver, ovaries, pancreas, pituitary gland, spleen, testes, thymus and thyroid glands—goiter.
12. Tendency to functional gastrointestinal disorders (Intestinal immobility, loss of tonus, constipation, lack of gastric secretions, ulcers, impaired appetite [anorexia] and digestion).
13. Tendency to muscle paralysis (loss of tone).
15. Tendency to edematous conditions.
16. Fall in body temperature.
17. Degeneration of central nervous system (impaired nerve function, convulsions, tetany).
18. Anemia.
19. Disturbances of reproductive cycle (sterility — atrophy of seminiferous tubules, loss of libido, anestrus — hemorrhage at partus and abortions).
20. Dental caries.
21. Predisposes to allergic conditions.

Results of Absence:
22. Beriberi.
23. Peripheral and other forms of neuritis (polyneuritis).
24. Death.

Bibliography for Vitamin B on pages 143-149
VITAMIN C

Apparent Function:
1. Essential to health and integrity of endothelial tissues (raises resistance to infections).
2. Essential to proper development of teeth.
3. Essential to oxygen metabolism.
4. Regeneration of blood cells.
5. Maintains proper blood-clotting time.

Possible Results of Deficiency:
6. Tendency to structural tissue changes:
 — (a) Diseases of blood vessels and capillaries (fragility, hemorrhages, tendency to bruise easily, "black and blue spots," purpura hemorrhagica), (varicosities).
 — (b) Diseases of gums (hemorrhages, sore gums), (pyorrhea).
 — (c) Tooth degeneration (Necrosis, caries).
 — (d) Joint and bone changes (Decalcification, friability).
 — (e) Mucous membrane hemorrhages.
 — (f) Destruction of bone marrow.
7. Tendency to epithelial lesions (ulcerations of mouth, intestine, etc.).
8. Increased susceptibility or reduced resistance to infections.
10. Physical weakness, depression and irritability.
11. Rapid respiration and heart action.
12. Blood degeneration (Tendency to certain types of anemia, reduced hemoglobin, destruction of bone marrow).
14. Increased weight and enlargement of spleen, liver, stomach, intestines and kidneys.
15. Atrophy or hypertrophy of glands:
 (a) Reduced secretion of adrenals;
 (b) Morbid secretion of thyroid (toxic goiter).
17. Development of edematous conditions.
18. Complications of pregnancy and lactation as well as ill effects to new born (Abortions).
19. Tendency to raised temperature.
20. Possible Sterility.
21. Lowered glucose tolerance.
22. Cataract.
23. Predisposes to allergic conditions.

Results of Absence:
24. Scurvy.
25. Sprue.

Bibliography for Vitamin C on pages 151-154
VITAMIN D

Apparent Function:
1. Essential to proper mineral metabolism; absorption from alimentary tract, utilization (health and calcification of bone and teeth) (Antirachitic action) and excretion of calcium and phosphorus.
2. Necessary to successful pregnancy and lactation.
3. Necessary for normalizing and reducing time of labor.
4. Necessary to maintain blood platelets at normal level.
5. Maintains normal coagulation time of blood.
7. Aids in maintaining muscle tone.
8. Increases strength of capillaries.
9. Related to hormonal function.
10. Increases resistance to infections (especially against tuberculosis).
11. Necessary to normal respiratory function.

Possible Results of Deficiency:
12. Rickets and osteomalacia (improper calcification of bone).
15. Instability and irritability of nervous system and tissues.
17. Muscular weakness, constipation and reduced motility of gastrointestinal tract.
18. Increased tendency to dental caries and defective teeth (improper calcification) (pyorrhea).
19. Parathyroid dysfunction (Enlargement).
20. Menstrual disorders, cessation of ovulation, uterine atrophy, difficult childbirth due to deformities in pelvic development.

Results of Absence:
22. Rickets.
Bibliography for Vitamin D on pages 155-159
VITAMIN E

Apparent Function:
1. Necessary to reproduction in both male and female (necessary to prevent irreparable sterility in male)
2. Necessary to maintenance of mental alertness.
3. Necessary to growth and vigor.
4. Possibly to prevent carcinoma.
5. Necessary to resistance to infections.
6. Possibly to prevent paralysis of young (from E-deficient mothers).
7. Vermifuge (possibly due to associated principles).
8. Some influence on the endocrines (pituitary, anterior pituitary).

Possible Results of Deficiency:
10. Wasting of muscles, paralysis.
11. Lowered resistance in infections (particularly to infantile paralysis).
12. Sterility (Temporary in female — interference with placental function), (Permanent in male—irreparable seminiferous epithelial injury).

Results of Absence:
13. Severe paralysis.
15. Roughness, falling out (alopecia) and altering of the texture of the hair.
16. Possible tendency to malignancies.

Bibliography for Vitamin E on pages 161-164
VITAMIN F

Apparent Functions:
1. Necessary to healthy epidermis (Protection against infection).
3. May be necessary to maintain normal blood sugar (Possibly related to Insulin secretion).
4. Necessary to cell respiration.
5. Necessary to hair health.
6. Necessary to brain function and probably to function of other nerve tissue.

Possible Results of Deficiency:
7. Epidermal manifestations (Ridged and split fingernails, eczematous conditions, dermatitis—infantile and allergic, scurf, dandruff and hemorrhagic spots on the skin).
8. Brittleness and falling out of hair (Alopecia).
9. Involvement of endocrine glands (pituitary in particular).
10. Involvement of visceral organs (particularly kidneys).
11. Lowers resistance to allergies.
12. Susceptibility to Vitamin D poisoning.
13. Loss of sex instinct.
14. Lowered resistance to infections (Tuberculosis in particular).

Results of Absence:
15. Cessation of growth and subsequent death.
16. Severe renal manifestations (Hematuria, albuminaria and severe nephritis).
17. Sterility (Impaired and irregular ovulation with interference with mechanism of labor in the female), (Loss of sex potentia with eventual sterility in the male).

Bibliography for Vitamin F on pages 165-168
VITAMIN G

Apparent Function:
1. Necessary to growth and development.
2. Necessary to cell respiration.
3. As growth stimulus promotes normal repair processes and thereby delays senility.
4. Necessary to blood regeneration.

Possible Results of Deficiency:
5. Underdevelopment and retarded growth from malnutrition.
6. Eye disorders (conjunctivitis).
7. Incipient pellagra.
8. Abnormally slow regeneration of erythrocytes (secondary anemia).
9. Cutaneous changes (pellagric symptoms, mild dermatitis).
11. Loss of hair (alopecia).
12. Sprue.
13. Interferes with normal skin respiration.
15. Fatty infiltration and degeneration of the liver.
16. Renal manifestations (Cystitis, Hemorrhagic conditions of the urine, stones—renal calculi).

Results of Absence:
17. Gastrointestinal disturbances (Gastroenteritis, stomatitis, ulcerative colitis, diarrhea, nausea, vomiting, achlorhydria).
18. Cessation of growth.
19. Eye disorders (keratinization, severe conjunctivitis, ophthalmia, cataracts).
20. Severe pellagra.
21. Severe nerve and spinal degeneration (Mental disorders, hyperirritability).

22. Death.

Bibliography for Vitamin G on pages 169-173
BIBLIOGRAPHY FOR VITAMIN A

 • Journal of the American Medical Association, Editorial, 97:783, 1931.
 • Mellanby, E. and Green, H. H., British Medical Journal, 1929.
 • Quigley, Daniel Thomas, Notes on Vitamins and Diets, page 16-17, 43, Consolidated Book Publishers, Inc., Chicago, 1933.
 • Stepp, W., Kuhnau, J. and Schroeder, H., The Vitamins and Their Clinical Application, Ferdinand Enke, Stuttgart, Germany, 1936.
 • United States Department of Agriculture Circular No. 84.

 • Stepp, W., Kuhnau, J. and Schroeder, H., The Vitamins and Their Clinical Application, Ferdinand Enke, Stuttgart, Germany, 1936.

138 THE VITAMINS AND THEIR CLINICAL APPLICATION

— United States Department of Agriculture, Circular No. 84.

— Stepp, W., Kuhnau, J. and Schroeder, H., The Vitamins and Their Clinical Application, Ferdinand Enke, Stuttgart, Germany, 1936.

— United States Department of Agriculture, Circular No. 84.

— Stepp, W., Kuhnau, J. and Schroeder, H., The Vitamins and Their Clinical Application, Ferdinand Enke, Stuttgart, Germany, 1936.

— Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

— Mason, K. E., *Reproductive Function in Female Rats on Low Levels of Vitamin A*, Anatomical Record, 58. 4, Suppl. 80, 1934.
140 THE VITAMINS AND THEIR CLINICAL APPLICATION

— Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

— United States Department of Agriculture, *Circular No. 8U*.

— Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

BIBLIOGRAPHY FOR VITAMIN A

141

— Stepp, W., Kuhnau, J. and Schroeder, H., The Vitamins and Their Clinical Application, Ferdinand Enke, Stuttgart, Germany, 1936.

— Stepp, W., Kuhnau, J. and Schroeder, H., The Vitamins and Their Clinical Application, Ferdinand Enke, Stuttgart, Germany, 1936.

BIBLIOGRAPHY FOR VITAMIN B

 — Stepp, W., Kuhnau, J. and Schroeder, H., The Vitamins and Their Clinical Application, Ferdinand Enke, Stuttgart, Germany, 1936.
 — Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

 — Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

BIBLIOGRAPHY FOR VITAMIN B

— Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

— Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.
 - Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

 - Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

BIBLIOGRAPHY FOR VITAMIN B

— Marks, H. E., Medical Journal and Record, March 2, 1932.
— Stepp, W., Kuhnau, J. and Schroeder, H., The Vitamins and Their Clinical Application, Ferdinand Enke, Stuttgart, Germany, 1936.

— Stepp, W., Kuhnau, J. and Schroeder, H., The Vitamins and Their Clinical Application, Ferdinand Enke, Stuttgart, Germany, 1936.

— Stepp, W., Kuhnau, J. and Schroeder, H., The Vitamins and Their Clinical Application, Ferdinand Enke, Stuttgart, Germany, 1936.

The Vitamins and Their Clinical Application

— Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

— Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

BIBLIOGRAPHY FOR VITAMIN C

 - Medicine, 13:205, 1934.
 - Proceedings of Society of Experimental Biology and Medicine, page 1157, April, 1935.

 - Vitamin D Milk, 2, 1:2, January, 1935.

— Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

7. Archives of Internal Medicine, 51:426.

— Proceedings of Society of Experimental Biology and Medicine, page 1089, April, 1935.

— Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

— Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

 — Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

BIBLIOGRAPHY FOR VITAMIN D

 - McCollum, E. V., *Safeguarding the Growing Child*, No. 5.
 - Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.
 - Telfer, S. V., *Studies on Calcium and Phosphate Metabolism*, Part II;
The Metabolism of Calcium and Phosphorus in Rickets, Quarterly Journal of Medicine, 16:63, 1922-1923.

— Telfer, S. V., Studies on Calcium and Phosphate Metabolism, Part III; The Absorption of Calcium and Phosphorus and Their Function in the Skeleton, Quarterly Journal of Medicine, 17:245, 1924.

5. Gunn, F. D., Proceedings of the Society of Experimental Biology and Medicine, 24:120, 1926.

— Stepp, W., Kuhnau, J. and Schroeder, H., The Vitamins and Their Clinical Application, Ferdinand Enke, Stuttgart, Germany, 1936.

— Stepp, W., Kuhnau, J. and Schroeder, H., The Vitamins and Their Clinical Application, Ferdinand Enke, Stuttgart, Germany, 1936.

— Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

— Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

— Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

 — East, Bion R., *Vitamin D Milk: Its Significance to the Public Health and to the Milk Industry*, Journal of Medicine, 418-423, October, 1934.
 — McCollum, E. V., *Relationship Between Diet and Dental Caries*, Journal of Dental Research.
 — Vitamin D Milk, 2, 1:2, January, 1935.

 — Vitamin D Milk, *Parathyroid Enlargement as Related to Sunshine and Vitamin D*, 3, 4:16, April, 1936.

BIBLIOGRAPHY FOR VITAMIN E

6. Olcott, H. S., *Paralysis in the Young of Vitamin E Deficient Female*

— Gierhake, Experimental Studies on Vitamin E, Arch. F. Gynekol., 156:348-350, 1933.

— McQueen-Williams, M., Increased Gonadotropic Content of Anterior Hypophysis from Vitamin E Deficient Female Rats, Anatomical Record, 58, No. 4, Suppl. 77, 1934.

— Verzar, F., Hypertrophy of the Uterus and Vitamin E. Internal Secretion and Avitaminosis, Pflugers Arch., 227:491-510, 1931.

 — Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

 — Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

— Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.
BIBLIOGRAPHY FOR VITAMIN F

 — Cornbleet, T., Use of Maize Oil (Unsaturated Fatty Acids in the Treatment of Eczema), Archives of Dermatology and Syphilology, 31:224-226, 1931.
 — Hansen, A. E., Study of Iodine Number of Serum Fatty Acids in Infantile Eczema, Proceedings of the Society of Experimental Biology and Medicine, 30:1198-1199, 1933.
 — Pacini, August J., Vitamin F (Unsaturates), American Perfumer, December, 1936.

— Burr, G. O. and Burr, M. M., *A New Deficiency Disease Produced by
BIBLIOGRAPHY FOR VITAMIN F

BIBLIOGRAPHY FOR VITAMIN G

 - Stepp, W., Kuhnau, J. and Schroeder, H., The Vitamins and Their Clinical Application, Ferdinand Enke, Stuttgart, Germany, 1936.

4. Stepp, W., Kuhnau, J. and Schroeder, H., The Vitamins and Their Clinical Application, Ferdinand Enke, Stuttgart, Germany, 1936.

— Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

— Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.
BIBLIOGRAPHY FOR VITAMIN G

— Stepp, W., Kuhnau, J. and Schroeder, H., *The Vitamins and Their Clinical Application*, Ferdinand Enke, Stuttgart, Germany, 1936.

172 The Vitamins and Their Clinical Application

— Stepp, W., Kuhnau, J. and Schroeder, H., The Vitamins and Their Clinical Application, Ferdinand Enke, Stuttgart, Germany, 1936.

— Stepp, W., Kuhnau, J. and Schroeder, H., The Vitamins and Their Clinical Application, Ferdinand Enke, Stuttgart, Germany, 1936.

— Oncken, Mildred, Physiological Effects of Vitamin Deficiencies as Summarized Briefly from Recent and Authenticated Research Experiments, Illinois Medical Journal, December, 1934.

— Stepp, W., Kuhnau, J. and Schroeder, H., The Vitamins and Their Clinical Application, Ferdinand Enke, Stuttgart, Germany, 1936.

ANEMIA

Pernicious, cause of...
relat. of sprue to...
steatorrhea often observed in...
plasma symptoms of, present in...
tongue, relation to...
treatment with Vitamin B complex and...
Secondary, treatment of, with Vitamin C and iron...
Sprue of rat, simulates goat-milk...
Vitamin B complex, importance of, in...
Yeast-cureable, due to deficiency of Vitamin B1 complex...

ANEMIA - PREVENTING FACTOR OF VITAMIN B COMPLEX.

ASCORBIC ACID

Adrenalin, oxidation of, impeded by...
Adrenalin, blood pressure effect of, due to effect on...
Albumen, plasma increased following admin-istration of...
Anemia, Biermer’s, treatment of...
Biological test for...
Blood clotting time reduced by...
Blood pressure changes on administration of...
Bone-cartilage, destruction of, treatment of...
Cell changes, internal, activates...
Children, dosage of, in...
Clot-producing faculty of...
Complexity of...
Death from Vitamin C-free diets avoided by administration of...
Determination of...
Dipheria-toxin detoxified by...
Ferments are activated by...
Gingivitis, treatment of, with...
Hemorrhages, gastrointestinal, treatment of, with...
Insulin, relation of, to...
Internal secretions, ability of, to activ-
te...
Lense, power of reduction in, need for, in...
Liver, prevention of activity of, by...
Marrow, bone, relation of, to...
Sources of...
Sweat, anemia of, treatment of, with...
Vitamin B1 deficiency, relation to anemia, hyper-
black tongue, chromatin...
Determination of...
Fetal transmission of, to Liver...
Goat-Milk anemia, treatment of, with yeast, wheat, liver, and iron...
Granulopenia, relation to deficiency of...
Liver, relation of...
Megaloblastosis, relation to deficiency of iron and...
Granulomepra, relation to deficiency of...
Pellagra, anemia of, treatment of, with...
Sources of...
Sweat, anemia of, treatment of, with...
Vitamin B1 deficiency, symptom of lack of...
Storage of, in body...
Vitamin B2, relation to...

ANEMIA - PREVENTING FACTOR OF VITAMIN B COMPLEX.

ASCORBIC ACID

Adrenalin, oxidation of, impeded by...
Adrenalin, blood pressure effect of, due to effect on...
Albumen, plasma increased following admin-
estration of...
Anemia, Biermer’s, treatment of...
Biological test for...
Blood clotting time reduced by...
Blood pressure changes on administration of...
Bone-cartilage, destruction of, treatment of...
Cell changes, internal, activates...
Children, dosage of, in...
Clot-producing faculty of...
Complexity of...
Death from Vitamin C-free diets avoided by administration of...
Determination of...
Dipheria-toxin detoxified by...
Ferments are activated by...
Gingivitis, treatment of, with...
Hemorrhages, gastrointestinal, treatment of, with...
Insulin, relation of, to...
Internal secretions, ability of, to activ-
te...
Lense, power of reduction in, need for, in...
Liver, prevention of activity of, by...
Marrow, bone, relation of, to...
Sources of...
Sweat, anemia of, treatment of, with...
Vitamin B1 deficiency, relation to anemia, hyper-
black tongue, chromatin...
Determination of...
Fetal transmission of, to Liver...
Goat-Milk anemia, treatment of, with yeast, wheat, liver, and iron...
Granulopenia, relation to deficiency of...
Liver, relation of...
Megaloblastosis, relation to deficiency of iron and...
Granulomepra, relation to deficiency of...
Pellagra, anemia of, treatment of, with...
Sources of...
Sweat, anemia of, treatment of, with...
Vitamin B1 deficiency, symptom of lack of...
Storage of, in body...
Vitamin B2, relation to...

ANEMIA - PREVENTING FACTOR OF VITAMIN B COMPLEX.

ASCORBIC ACID

Adrenalin, oxidation of, impeded by...
Adrenalin, blood pressure effect of, due to effect on...
Albumen, plasma increased following admin-
estration of...
Anemia, Biermer’s, treatment of...
Biological test for...
Blood clotting time reduced by...
Blood pressure changes on administration of...
Bone-cartilage, destruction of, treatment of...
Cell changes, internal, activates...
Children, dosage of, in...
Clot-producing faculty of...
Complexity of...
Death from Vitamin C-free diets avoided by administration of...
Determination of...
Dipheria-toxin detoxified by...
Ferments are activated by...
Gingivitis, treatment of, with...
Hemorrhages, gastrointestinal, treatment of, with...
Insulin, relation of, to...
Internal secretions, ability of, to activ-
te...
Lense, power of reduction in, need for, in...
Liver, prevention of activity of, by...
Marrow, bone, relation of, to...
Sources of...
Sweat, anemia of, treatment of, with...
Vitamin B1 deficiency, relation to anemia, hyper-
black tongue, chromatin...
Determination of...
Fetal transmission of, to Liver...
Goat-Milk anemia, treatment of, with yeast, wheat, liver, and iron...
Granulopenia, relation to deficiency of...
Liver, relation of...
Megaloblastosis, relation to deficiency of iron and...
Granulomepra, relation to deficiency of...
Pellagra, anemia of, treatment of, with...
Sources of...
Sweat, anemia of, treatment of, with...
Vitamin B1 deficiency, symptom of lack of...
Storage of, in body...
Vitamin B2, relation to...
ATONY

Gastric, due to Vitamin B group deficiency
Vitamin B group deficiency, symptom of, gastric

AVITAMINOSSES

Pigmentation, pathological, symptom of, multiple
Vitamin E may alleviate disorders other than those due to

AZOOSPERMIA

Treatment of, with Vitamin E

BACTERIA

Intestinal, interferes with absorption of Vitamin C in gastrointestinal tract

BALDNESS (See Seborrhea; Hair, Loss on)

Seborrhea, due to, may respond to treatment

Vitamin E group deficiency, symptom of, 25, 30, 64
Vitamin E, significant to the

BLACK TONGUE (cont’d)

Multiple vitamin deficiency condition
Nervous system, mild disorders of central, symptom of
Vitamin B2 complex deficiency, symptom of

Vitamin A does not cure; carotin does
Vitamin B2 deficiency, symptom of, 61
Vitamin B2 factor deficiency, symptom of, Vitamin E

BLEPHARITIS (See Eye Disorders)

BLOOD

Anemia factor of Vitamin B group influence
 formation of...

Calcium, deposition of, in, relation of Vitamin A and Vitamin D to

Calcium level of, raised by blood-clotting effect of Vitamin D

Carotin, level of 9-11

Catalases, activity of, increased by intravenous administration of

Catalases, of, relation of raising of, to Vitamin D

Cotting-producing faculty of ascorbic acid

Clotting effect of Vitamin D raises calcium level on

Clotting of (See Ascorbic Acid; Scurvy; Vitamin B Group; Vitamin C

Clotting time of, prolonged, due to deficiency of Vitamin B group

Clotting time of, reduced by ascorbic acid, iron and ascorbic acid

Clotting time of, (pure)...

Clotting time of, (pure)...

Pressure, ascorbic acid, affect of, on, due to effect on adrenals

" low, Vitamin B2 necessary...

" changes produced by administration of Vitamin B group reduces

" increased by administration of Vitamin B group

Red, picture, relation of Vitamin C to

Regeneration of, effect of ascorbic acid on Vitamin D

Reticulocytosis, deficiency of amena factor of Vitamin D

Sugar lowered in diabetes by injections of Vitamin D

Sugar and lactic acid metabolism in pigeon

Sugar lowering in diabetes by lacticolin

Scurvy and, may have common base of morbidity

Symptoms of...

Vitamin B4 deficiency, relation of, to ascorbic acid... 71

Vitamin B4 deficiency, relation of, to ascorbic acid...

Vitamin B6 deficiency, symptom of

Vitamin B2, -regeneration factor of

Vitamin B6 deficiency, symptom of

Vitamin B2 factor deficiency, symptom of

Vitamin B2 complex deficiency, symptom of

Vitamin A does not cure; carotin does

Vitamin B2 factor deficiency, relation of, to

Vitamin B6 deficiency, symptom of

Vitamin B2 factor deficiency, relation of, to

Vitamin B6 deficiency, symptom of

Vitamin B2 factor deficiency, relation of, to

Vitamin B6 deficiency, symptom of

Vitamin B2 factor deficiency, relation of, to

Vitamin B6 deficiency, symptom of

BONE (See Desease Changes)

Acute, granulocytosis similiizes

Anemia, symptom of...

" hyperchromatic, symptom of...

" pernicious, symptom of, present in

Anemia factor of Vitamin B group, deficiency

Atrophy of, develops in secondary pellagra... 50, 53

Carotin cures

Diarrhea, symptom of...

Digestive disturbances (ulcerations and inflammations), symptom of...

Manifestations of...

Manifestations of...

MANUFACTURES of...
DIETS

High carbohydrate (See Carbohydrate Metabolism)

High fat (See Fat)

Vitamin deficiencies of various..........................112-114

DIGESTIVE DISORDERS (See Gastrointestinal Tract)

DIETS

High carbohydrate (See Carbohydrate Metabolism)

High fat (See Fat)

Vitamin deficiencies of various..................112-114

DENTAL CARIES (See Caries, Dental)

DENTAL DISORDERS (See Caries, Dental; Teeth)

Perodontitis, treatment of, with ascorbic acid...............70

Treatment of, with Vitamin B95-96

Vitamin A deficiency symptom, abnormal enamel and cement development........6

Vitamin C and...78-70

Vitamin C deficiency manifest in degeneration of tooth components........8

DERMATITIS (See Epithelium; Skin Changes)

Egg-white, of chicks, pellagra-like clinical symptoms of........49

" " Vitamin H deficiency, symptom of..................49

" " pellagra, rat, often confused with..........................107

" " Vitamin H deficiency, manifestation of..................49, 105

Interrelationship of Vitamin B6 and Vitamin B8 in treatment of..........47

Lichenoides, Vitamin H deficiency, manifestation of...............106

Non-specific, Vitamin B6 deficiency, symptom of............57

Pellagra, rat, symmetrical, symptom of......................57

Pityriasis, Vitamin H deficiency, manifestation of.............106

Preventing factor of Vitamin B Group (Vitamin B8)..............47

Pyodermatoses, Vitamin H deficiency, in rats and human, symptom of..105

Seborrhoea, due to lack of Vitamin H..........................106

" " endocrine unbalance may contribute to development of.....106

" " may be due to endocrine unbalance.........................106

" " treatment of, with Vitamin H.............................106

" " Vitamin H deficiency, symptom of..................106

Treatment of, with Vitamin B8..................................47

Vitamin B8 deficiency, symptom of..........................47

DIABETES

Antidiabetic action of yeast extracts......................31

Diabetic diets deficient in Vitamin B 6...................27

Lecitoflavine injections lower blood sugar of Polyneuritis of (See Polyneuritis, diabetic)............46

Treatment of, with Vitamin B 6..............................31-32

Vitamin C, demand for, increased in........................74

Yeast, antidiabetic action of..................................31

" " extracts, use of, in....................................31

DIARRHEAS

Black tongue, symptom of..................................49

Puffy, pellagra, often seen in oatmeals and herbiowers........50

Pellagra, fatty, seen in diet..................50

" " symptom of..50

Sprue, preventing factor, cause of..........................54

Vitamin B6 complex deficiency develops in 55-56

" " manifestation of..49, 56

" " may cause pellagra and megablastic anaemia........55

" Vitamin H resorption inhibited by......................105-107

DIFTERIA TOXIN

Ascorbic acid, detoxification of, by..........................72

DYSENTERY

Pellagra often develops in, due to faulty absorption of Vitamin B6 complex........59

DYSPNŒA

Vitamin C deficiency, symptom of..........................74

DYSTROPHIES

Muscular, Vitamin B 6 deficiency, manifestation of..........101

ECCHYMOSES

Vitamin B6, need for, in of extremities....................28

ECZEMA

Specialized, symptom of tropicalavitaminosic B6 complex........62

Treatment of, with Vitamin B 6..............................96

Vitamin B6 complex avitaminosis of mouth and scrotum, symptom of........62

EDema

Beriberi, infantile, symptom of............................32

Vitamin B6, need for, in......................................28

Vitamin B8 deficiency, symptom of..........................24-25

EGG WHITE

Chemistry of..106

Dermatitis (See Dermatitis, Egg-White)

Fat Metabolism disturbances may be caused by too much dietary...105

Pellagra, human, toxicity of, play important role in......49

" " rat, often confused with, dermatitis.......................57

Pellagrolke clinical symptoms of dermatitis.................49

Pernicious, skin-fat metabolism disturbances and intolerance of, often accompany........107

Status seborrhoea caused by too much fat...................105

Toxicity of..106

" " neutralized by Vitamin H.................................106

" " nurplings particularly susceptible to.....................106

" " plays part in human pellagra..............................49

Vitamin H, relation to assimilation of....................106

Vitamin H, requirements of, run parallel to intake of fat and........104

Vitamin H deficiency, symptoms of, manifest in diets of excessive........106

Vitamin H neutralizes effect of toxicity....................106

EMACIATION

Hypervitaminosis A, symptom of...........................9

Hypervitaminosis D, symptom of..........................91

ENDOCRINES

Fatty infiltration of, symptom of hypervitaminosis D..........91

Insuline of, due to excessive.................91, 106

ENVIRONMENT THEORY OF RICKETS

EPIDEMICS

Escherichia developments after, reason for..................74

EPIDERMIS (See Epithelium; Skin)

Vitamin C high in..77

Vitamin C and78-79

Peradentosics, treatment of, with ascorbic acid..............79

Vitamin H deficiency, symptom of..................78-79

ENDOCRINES

Degeneration of, Vitamin A deficiency, symptom of........6

Infections of, susceptibility to, treatment of, with Vitamin A........12

Keratinization of, Vitamin A deficiency, symptom of.........6

Resistance of, lowered by Vitamin A deficiency................6

Treatment of changes in, with Vitamin A.....................12

Vitamin A, relation of, to............................6, 12

ERGOSTEROL

Cholesterol, serum, and phosphatase, increased by irradiated........92
ERGOSTEROL (cont'd)

Formule for .. 86

- Irradiation, an substrate in choles-
terol increased by 92
- treatment of rickets with/... 93
- and parathyroemone, affects calcium in parathyroidde-
toned animals 92-93

Irradiation products of, toxicity of, 91

Light activated, in skin, simulates anti-
rachitic action of Vitamin D 93

Ultraviolet light activated, to Vitamin D58-86

Vitamin D, activation of, to, by ultravo-
let light... 85-86

- light activated, simlizes 93

Vitamin D units expressed in terms of 86

ERYTHEMATOSA

dequameata, treatment, with Vitamin H, 106

generalized, treatment, with Vitamin H, 106

ESTRUS

Vitamin A deficiency, effect of, on 3

ETHY-SOLUBLE SUBSTANCES IN DIET

Deficiency of, results of 1

EXHAUSTION

Vitamin C deficiency, symptom of 74

EXOPHTHALMUS

Hypervitaminosis A, due to 0

EXSICCISIS

Vitamin B1 deficiency, symptom of 33

EYE DISORDERS (See Catarrh; Cornet)

Blepharitis in rat, manifestation of Vitamin H........ 25, 31

Cod liver oil, improvement of, on adminis-
tration of.. 1

Cornet lesions in pregnant and lactating
women, treatment of, with Vitamin B group and not Vitamin A 63

Fat-soluble substances in diet, deficiency
of, symptom of 1

Lense opacities often accompany celiac dis-
case .. 63

Neuritis, optic, symptom of tropical Vita-
mn B group (and not Vitamin A) 63

Treatment of, with Vitamin A 11

- - Vitamin B2 complex has been neglected 63

PAT

Absorption disturbances decrease blood Vi-
malin A and ceratin 10

- - hindered by inhibition of intestinal epithelium due to Vitamin B12 deficiency 31

Absorption of, Vitamin B12 indispensible for 25, 31

- - Vitamin H necessary for 103

Diet, high, Vitamin B1 requirement in, 22

Epidermis, fatty degeneration of, relation
of Vitamin H deficiency to 105

Hyperuricemia or gout, in, due to 91

Vitamin H content of 104

FATTY ACID

Unsatuated, Vitamin A may be necessary
catalyst in auto-oxidation of 7, 8

FATIGUE

Spring, Vitamin C deficiency condition 74

FEVER BLE DISEASES (See FEVERS)

Vitamin B1 requirement raised by 28

FERMENTS

Ascorbic acid activates 71

FERMENTATION (See also Sterility)

Vitamin E necessary for 96

FETUS

Vitamin H contains no 105

FEVERS

Vitamin B1 requirement increased by 27

FIROPOSITIS

Treatment of, with Vitamin B1 31

FLAVIN (See Lactoflavin)

Synthesis of, by bacteria and yeast 43

FOODS

Vitamin A content of 4-5

Vitamin B group content of 36

Vitamin B4 (GI) content of 43-44

Vitamin B5 content of 48

Vitamin C content of 60, 81

Vitamin D content of 80-86, 97

Vitamin E content of 100

Vitamin H content of 104

Vitamin (G) content of 43-44

Vitamin B content of 36

Vitamin B2 content of 28

Vitamin B3 content of 38

FRACTURES

Healing time of, reduced by administration
of Vitamin D 95

Pellagra, susceptibility to spontaneous, in 61

Spontaneous, due to hypervitaminosis A 0

- - susceptibility to, in pellagra 61

Treatment of, with Vitamin C 79

FURUNCULOSIS

Treatment of, with Vitamin H 107

- - yeast ... 35, 107

GAIT

Spatnic, Vitamin B1 deficiency produces 64

GASTRIC JUICE

Anemia factor of Vitamin B group, relation
of .. 31, 52-53

Sprue, tropical, nature of, in 61

Vitamin B1 deficiency, production of, dim-
inution or cessation in 30

Poten for noncommercial historical preservation and educational use only by seleneriverpress.com
GASTROINTESTINAL TRACT

Carotin and Vitamin A of blood decreases in patients with
GASTROENTERITIS

Absorption, faulty, celiac disease, due to,
treatment of, with Vitamin D.................... 95
Agranulocytosis may develop in due to
Cystein and glutathione, effect on. In animals with pellagra 48
Vitamin B deficiency, inhibition of, by...34
Interrelationship of, in prevention and cure of 47
Vitamin B, complex absorption disturbed by
inhibits, in children 80
Hypervitaminosis D, manifestation of... 91
Hypovitaminoses, great many due to which
disturb vitamin absorption........................ 74
Infections of, susceptibility to, increased
by Vitamin C deficiency.......................... 74
Operations, pellagra often develops after,
due to faulty absorption of Vitamin B complex....59
Pellagra caused by disturbed absorption of
Vitamin B, has several disorders of, with liver extracts 50-56
Sea sickness, of, in children 50-56
Rickets often develop despite Vitamin D in-
fake, due to faulty absorption, symptom of, In........ 54
Sprue, tropical, nature of gastric juice in
preventing factor deficiency, symptoms of, In........ 54
Vitamin B, complex, Indications of, importance
of, vitamin D. 40
Vitamin B, complex deficiency, symptom of... 47
Vitamin B deficiency, symptom of... 47
Vitamin B complex, Indications of, importance
of, vitamin D. 40
Vitamin B, deficiency, symptom of... 47
Vitamin B deficiency, symptom of... 47
Vitamin B complex deficiency, symptom of... 47
GROWTH (cont'd)
Vitamin D deficiency, retarded longitudinal, 90
of long bones, 90
Vitamin H, strengthening properties of, 100

GROWTH FACTOR OF VITAMIN B GROUP
-Lectofolin, 40-41
Complexity of, 39

GLAUCOMA
Bleeding of, Vitamin C deficiency condition, 74, 78
Changes in, Vitamin C deficiency, result of, 78-79
Swelling of interdigital papillae, due to Vitamin C deficiency, 78
Ulcerations of, due to Vitamin C deficiency, 78
Vitamin C deficiency, relation of, to, 74, 79

GYNECOLOGY
Vitamin B1, use of, in, 34

HAIR (See Baldness; Seborrheas)
Loss of, manifestation of Vitamin B2 deficiency, result of, 21-22, 24
" " Vitamin B2, curing properties used as test for, 21
Disorders of, Vitamin B2 deficiency may cause, 21
" " Vitamin C deficiency, symptom of, 74
Vitamin B1 necessary for normal, 24
" deficiency affects, 25

HEART FUNCTION
Bradycardia, sinus, Vitamin B1 deficiency, result of, 21-22, 24
" Vitamin B1, curing properties used as test for, 21
Disorders of, Vitamin B1 deficiency may cause, 21
" " Vitamin C deficiency, symptom of, 74
Vitamin B1 necessary for normal, 24
" deficiency affects, 25

HEART MUSCLE
Vitamin B1, action of, on sugar metabolism, 24
" deficiency, water imbibitions of, due to, 25

HEMATURIA
Vitamin C deficiency, symptom of, 74

HEMORRHAGES (See Blood, Clotting of)
Blood-clotting time reduced by pure Vitamin C, 75
Capillary, treatment of, with Vitamin C, 75
Gastrointestinal, treatment of, with ascorbic acid, 75
Genital, juvenile, treatment of, with ascorbic acid, 75
Intestinal, significant in Vitamin B1 condition, 75
Hypermuscular, treatment of, with ascorbic acid, 75
Intestinal, symptom of, 75
Vitamin B1 deficiency, complex deficiency, 75
Hypermuscular, treatment of, with ascorbic acid, 75
Pellagra, symptom of, 75

HEMORRHAGES (cont'd)
Post-icteric, treatment of, with ascorbic acid, 75
Post-tuberculosis, treatment of, with ascorbic acid, 75
Pulmonary, prevented by Vitamin D, 75
Renal, treatment of, with ascorbic acid, 75
Scoury, of, 75
Skin, treatment of, with Vitamin B1, 75
Treatment of, with ascorbic acid, 75
" " Vitamin C, 75
Vitamin C deficiency, symptom of, 75

HERPES ZOSTER
Treatment of, with Vitamin B1, crystalline, 35

HEXURONIC ACID
Vitamin C, abandoned name for, 68

HIDROSIS (See Epithelium; Skin)
Rough, in animals, manifestation of hyperaurorosism D, 91

HORMONAL DISTURBANCES
Rachitogenic effect, may have, 90

HORMONES AND VITAMINS 118-119

HYDROCHLORIC ACID
Vitamin C deficiency, symptom of, 109
Treatment of, with ascorbic acid, 75

HYDROCALCEMIA
Vitamin B1 deficiency, symptom of, 15

HYPEREMESIS OF PREGNANCY (See also Pregnancy)
Treatment of, with vitamin A, 11, 14

HYPERFUNCTIONALISM
Blood, levels of Vitamin A and carotin in, 11
Treatment of, with Vitamin A, 11, 14
" " Vitamin B1, 22
Vitamin A, increased metabolic consumption of, 11
Vitamin B1, demand for, increased in, 27
Vitamin B1 deficiency, due to, 32

HYPERFUNCTIONALISM A
Carotin, relation of, to, 9
Emaciation, extension of, 9
Exophthalmias, due to, 9
Fatty degenerations of liver symptom of, 9
Fractures, spontaneous, due to, 9
Hair, loss of, symptom of, 9
Hemorrhages, intestinal, symptom of, 9
Pulmonary, symptom of, 9
Lipoid, causes accumulation of, in skin, 9
Symptoms of, 9
Tests, fatty changes of interstitial calls of, due to, 9
Thyroid gland, hypertrophy of, symptom of, 9
Vitamin B1 administration reduces, 25
Vitamin C overcomes, 9, 72

HYPERFUNCTIONALISM D
Arterial walls, fatty infiltration of, due to, 91
Cachexia, manifestation of, in animals, 91
Calcium deposits in animals, manifestations of, 91
" " " large vessels, heart and kidney due to, 91
" withdrawn from bones by, 91
Death, manifestation of, in animals, 91
Emaciation, symptom of, 91
Endocrine, fatty infiltration of, 91
Fat metabolism, affect of, on, 91
Fatty infiltration of arterial walls, symptom of, 91
HYPERVITAMINOSIS D (cont'd)

Glutathione, decrease of, in, may be manifestation of oxidative disturbance of... 02
Heredity, manifestations of, in... 01
Hide, rough, manifestation of... 01
Hypercalcemia, symptom of, in... 01
Hyperparathyroidism, symptom of... 01
Manifestation of, in animals... 01-02
Manifestation of, in man... 01-02
Nephritic symptoms in... 01-02
Oxidative processes lowered in test animals... 02
Protein synthesis may produce uremic symptoms in... 01
Results of, in man and animals... 02
Retardation of symptoms of, if other vitamins are given together with large doses of Vitamin D... 01
Symptoms of... 01
" in animals... 02
" in man... 02
Uremic symptoms of... 01
Vitamin A in large quantities prevents... 117
Vitamin B1 administration overcomes... 29

HYPOCALCEMIA

case, symptoms of... 05
Symptoms of... 05
Symptoms, idopathic, hyperparathyroidism, alkalosis and... 05
Vitamin D deficiency, due to... 05

HYPOGLAUCIA

Treatment of, with Vitamin E... 101

HYPOPROTEINEMIA

Vitamin B1 deficiency, symptom of... 25, 28

HYPTENSION (See Blood Pressure)

Blood, Vitamin A and carotin levels in... 11
Vitamin A consumption decreased in... 11

HYPOVITAMINOSIS

Gastrointestinal disturbances of absorption, great many, due to... 74
Normal persons frequently show wild symptoms of multiple... 100-110

HYPOVITAMINOSIS C

Symptoms of... 74-75

ILEUS

Pelagra often develops in, due to faulty absorption of Vitamin B2 complex... 50

INFECTION THEORY OF RICKETS

85

INFECTION THEORY OF SCURVY

67

INFECTIONS

Epileptic, susceptibility to, Vitamin A to combat... 12
Gastrointestinal, susceptibility to, Vitamin C deficiency condition... 74, 76
General, treatment of, with Vitamin A... 15
Infectious diseases, Vitamin C deficiency lowers immunity and resistance to... 74
Respiratory, susceptibility to, Vitamin C deficiency condition... 74
Scurvy symptoms likely to develop after dietary deficiency of... 73
Seborrhoea and psoriasis, resulting from... 107
Skin, manifestation of Vitamin H deficiency... 105
Tertiary, manifestation of, deficiency of Vitamin C... 74
Vitamin B complex with Vitamin D raise resistance to... 96
Vitamin C consumption increased by... 75
Vitamin D and... 90
Vitamin D requirements raised by... 90
Vitamin D with Vitamin B complex raises resistance to... 96
Vitamin H, antinfestive action of... 116

INFLUENZA

Mechanism, due to, of... 12
Resistivity to... 10, 14
Scour, symptoms likely to develop after dietary deficiency of... 73
Seborrhoea and psoriasis, resulting from... 107
Skin, manifestation of Vitamin H deficiency... 105
Tertiary, manifestation of, deficiency of Vitamin C... 74
Vitamin B complex with Vitamin D raise resistance to... 96
Vitamin C consumption increased by... 75
Vitamin D and... 90
Vitamin D requirements raised by... 90
Vitamin D with Vitamin B complex raises resistance to... 96
Vitamin H, antinfestive action of... 116

INRULIN

Ascending, relation of, to... 72
Diabetes, possibility of replacing, with... 31
Vitamin B1... 31
Vitamin A blood levels, has no influence on... 10
Vitamin B6, possibilities of replacing, in diabetes... 31
Vitamin B12, relation of, to, in carbohydrate metabolism... 21-22
Vitamin B12, similarity to... 31-32

INTERNAL MEDICINE

Vitamin B1 in... 30-32

INTESTINES

Function of, sprue-preventing factor of Vitamin B2 group, necessary for normal... 54-55
Vitamin B1 necessary for normal... 64
Symptoms between celiac disease and sprue... 61
Vitamin B complex deficiency, lepra symptoms in, and skin are increased by... 02
Wall of, storage of ascorbic acid in... 77-78

IODINE METABOLISM

Fat metabolism and, interrelationship of, with thyroid... 32

IRON

Anemia, goat-milk deficiency of anemia factor of Vitamin B2 group and, due to... 61
Anemias, secondary and chlorhydric, treatment of, with Vitamin C and... 76
Blood-clotting time shortened by l-ascorbic acid together with... 71, 76
Deficiency of, goat-milk anemia, due to deficiency of anemia factor of Vitamin B2 group and... 61
" pellagra, condition similar to, may be caused by... 49
Metabolism of, Vitamin B group factor, relation to... 49
Pelagra, administration of, may accelerate pallor... 49
Treatment of, with iron... 49
Sulphur, Vitamin B and, may be necessary to prevent pellagra... 49
Vitamin C and, treatment of anemias, secondary and chlorhydric with... 76

IRRADIATION (See Ergosterol; Ultraviolet Vitamin D)

Artificial, of foods, produces antirachitic agents... 85
Products of, toxicity of some... 01

IRRITABILITY

Beriberi, symptom of infantile... 32
Tropical Vitamin B complex avitaminosis, symptom of... 62

JAUNDICE

Vitamin A and carotin low in blood in patients with... 10, 11

KATHEPSIN

Vitamin C, activated by... 61

KERATINIZATION (See Epithelium; Skin

Hyperkeratosis, follicular, related to pelagra... 57
Vaginal, Vitamin A deficiency, symptom of... 40

KERATITIS-PREVENTING FACTOR OF VITAMIN B1 COMPLEX

Tropical Vitamin B complex avitaminosis, symptom of... 62

KREATOMALACIA

Deficiency of fat-soluble substances in diet, due to... 1Treatment of, with Vitamin A... 12, 13, 14
" pellagra, symptom of... 1
" pellagra, condition similar to... 49
" treatment of, with iron... 49
Sulphur, Vitamin B group and, may be necessary to prevent pellagra... 49
Vitamin C and, treatment of anemias, secondary and chlorhydric with... 76

LATTICE (See Ergosterol; Ultraviolet Vitamin D)

Artificial, of foods, produces antirachitic agents... 85
Products of, toxicity of some... 01

LIVER

deference condition... 74, 76

MANUFACTURE

" " " of foods, produces antirachitic agents... 85
Products of, toxicity of some... 01

MENTHOL

Dyscrasia and, in man... 03

METABOLISM

Products of, toxicity of some... 01

MUSCLES

Vitamin C, activated by... 61

NUTRITION, GENERAL

Vitamin C, activated by... 61

OSSIFIC (See Bone; Carbohydrates)

Absorption of Vitamin B2 complex... 50

OVERDOSE

Vitamin D and... 80

PARESIS

Sulphur, Vitamin B and, may be necessary to prevent pellagra... 49
Vitamin C and, treatment of anemias, secondary and chlorhydric with... 76

PERNICA

Vitamin C, activated by... 61

PLASMA

Vitamin C, activated by... 61

PLASMIN

Vitamin C, activated by... 61

PLEURITIS

Vitamin C, activated by... 61

POULTRY

Vitamin C, activated by... 61

PURINE METABOLISM

Vitamin C, activated by... 61

RHEUMATISM

Vitamin C, activated by... 61

RIBOFLAVIN

Vitamin C, activated by... 61

RICE

Vitamin C, activated by... 61

RISK

Vitamin C, activated by... 61

RUPALACIA

Deficiency of fat-soluble substances in diet, due to... 1Treatment of, with Vitamin A... 12, 13, 14
" pellagra, symptom of... 1
" pellagra, condition similar to... 49
" treatment of, with iron... 49
Sulphur, Vitamin B group and, may be necessary to prevent pellagra... 49
Vitamin C and, treatment of anemias, secondary and chlorhydric with... 76
KERATOMALACIA (cont'd)

Treatment of, with Vitamin A subcutaneously or intramuscularly if generalized, intestinal, or pancreatic disease are present. 14

" " " " Vitamin N. 107

Vitamin A deficiency, due to retinal degeneration. 0

Vitamin N, symptom of severe deficiency of, in human and rat. 105

KETOSGENIC DIET

Vitamin B1 deficiency in. 27

KIDNEY DISORDERS (See Renal Disorders)

LACTATION

Corneal lesions in lactating mothers cured by Vitamin B group and not by Vitamin A. 63

Vitamin A requirement high in. 13

Vitamin B requirements greater for, than normal. 27

Vitamin B2 requirements increased by. 45

Vitamin C, relation of, to. 79-81

LACTIC ACID

Carbohydrate/lactic acid quotient rises on administration of Vitamin D. 92

LACTOFOLAVIN

Diabetes, injections of, lower blood sugar. 46

Growth factor of Vitamin B group. 40-41

Pellagra, has no effect on. 60

LENS METABOLISM (See Eye Disorders)

Ascorbic acid present in celiac disease. 63

Vitamin C and Vitamin B2 complex, possible relation to. 95

LEPROSIA

Pellagra, some symptoms of, similitue those of. 62

Vitamin B2 complex deficiency, due to. 58

Vitamin B2 skin and intestinal symptoms of. 62

LEUKOPENIA

Development of, in various deficiency conditions. 63

LEUCORRHEA

Treatment of, with Vitamin D. 96

LIPID METABOLISM

Hypervitaminosis A causes accumulation of, in skin. 9

LIVER

Acrodermatitis, treatment of, with. 34

Activity of, ascorbic acid present in. 70

Anemia, Biermer's, treatment of, with. 11

* goat-milk, treatment of, with. 62

* hyperchromic, treatment of, with. 58

* pernicious, Vitamin B complex and, treatment of, with. 29

Anemia factor of Vitamin B group, transmission of, to fetus. 53

Beriberi, infantile, swelling of, symptom of. 32

Carotin, conversion of, to Vitamin A not complete if thryogenic damage is present. 8, 10

Carotin blood levels disturbed by pathology of. 10, 11

Cells, fatty changes as result of hypervitaminose A. 0

Chicken, improvement of eye disorders with. 1

Cooked, treatment for tropical Vitamin B2 complex avitaminose with. 62

LIVER (cont'd)

Extracts of, colitis, alleviates colon pathology of. 56

" " " treatment of pellagra with. 60

" " " sprue with. 54

" " " stenothromia with. 61

Eye disorders, treatment of, with chicken. 1

Fatty degeneration of, symptoms of hypervitaminose A. 0

" " " infiltration of, symptom of. 91

Hypervitaminosis A, fatty degeneration of, symptom of. 91

Hypervitaminosis B, fatty infiltration of, symptom of. 91

Nerve degenerations, Vitamin B complex and, treatment of, with. 29

Pellagra, latent or incipient, treatment of, with. 60

" Vitamin B complex and, treatment of, with. 29

Pellagra with serious gastrointestinal disturbances, treatment of, with extract of. 50-60

Polyneuritis, alcoholic, treatment of, with yeast and. 28

Spinol lesions, Vitamin B complex and, treatment of, with. 20

Sprue, treatment of, with. 54

" " " " vitamin B complex and, treatment of, with. 20

Stenothromia, intramuscular or intravenous injection of, for. 61

Swelling of, symptom of infantile beriberi. 32

Vitamin A blood levels disturbed by pathology of. 8, 10

" " " conversion of carotin to, not complete if thryogenic damage is present. 8, 10

Vitamin B complex and, anemia, pernicious, treatment of, with. 29

" " " " nerve degenerations, treatment of, with. 29

" " " " pellagra, treatment of, with. 29

" " " " lesions, spinal, treatment of, with. 29

" " " " sprue, treatment of, with. 29

MAGNESIUM

Carotin, relation of content of, in foods, to, in soil. 5

MALARIA

Vitamin B requirement raised by. 28

MALIGNANCY

Vitamin E deficient animals show tendency to, in stomach wall. 101

MARROW

Bone, ascorbic acid, relation of, to. 75-76

MASTOIDITIS

Vitamin A deficiency, manifestation of. 6

MELANIN

Ascorbic acid inhibits formation of. 77

MELANOSIS (chloasma-like)

Addison's disease, often appear with. 77

Anemia, chloroide, treatment of, with. 77

Treatment of, with ascorbic acid. 77

MENARCHE

Treatment of, retarded, with Vitamin E. 101

MENINGITIS

Beriberi, infantile, symptom of. 32

METABOLIC RATE

Vitamin B deficiency, drop in, may be due to decrease of oxidation. 93

METAL POISONING

Vitamin B complex may play part in alleviating effects of. 64
METHYLGLOXAL

Vitamin B deficient animals eliminate, in urine

MILK

Antirectic value of, increased by feeding
Vitamin D, "

Cow's, source of Vitamin D

Human, normal, Vitamin C content of, 70-80

" Vitamin C content of diet influences production of satisfactory Pasteurization of, effect of, on Vitamin C content, 80

Pellagra, treatment of, with

Vitamin C content of normal human milk, 70-80

" " dist influences production of satisfactory Pasteurization of, "

Vitamin D feeding increases antirectic value of, 90

Vitamin H, mother's has less than cow's, 106

MINERALS

Bone bending, manifestation of disturbed metabolism of, 90

Content of soil determines carotin content, 5

Demineralization in tuberculosis by over dosage of Vitamin D, 90

Growth, disturbed, manifestation of disturbed metabolism of, 90

Ossification due to disturbances of, metabolism of, due to Vitamin D deficiency, 90

Rachitic rosary caused by disturbances of metabolism of, 90

MISCELLANEOUS

Tendancy to, Vitamin C deficiency may cause, 70

MORTALITY, INFANT

Vitamin B
deficiency due to, in mother, 33-34

MUCOSA

Changes of, of mouth due to Vitamin B complex deficiency, 56

MUSCLE METABOLISM

Adrenal cortex, hypertrophy of, due to muscle-fatiguing work, 25

Dystrophia muscularis, muscular manifestations of Vitamin D deficiency, 101

Tonic, muscle (See Tonic)

Vitamin B
deficiency, muscular weakness due to, 27

" " present in

Vitamin E deficiency, muscular dystrophies, manifestations of, 101

Weakness, muscular, due to Vitamin B deficiency, 27

MYELOSIS

Funicular, prolonged treatment of, with Vitamin B, 35

" Vitamin B
deficiency, chronic manifestation of, 29

MYXEDEMA

Vitamin A, decreased metabolic consumption of, 11

NEPHRITIC DISORDERS

Hyperkalanemia D, manifestations of, in man, 92

" Protein disintegration (toxic) in may cause nephritic symptoms in hyperkalanemia D, 91

NERVOUS SYSTEM

Ataxia, symptom of tropical Vitamin B complex avitaminosis, which affects, 62

Black tongue, disturbances of central, symptom of, 49

OIL (See also Cod Liver Oil)

Eye disorders, improvement of, with, 95

Night blindness, treatment of, with, 12

NYCTALOPIA

Vitamin A deficiency, symptom of, 11

OSTEOMALACIA

Puerperal, due to withdrawal of calcium and Vitamin D by fetus, 95

Symptoms of, 95

Treatment of, with Vitamin D, 94-95

Vitamin D deficiency, symptom of, 94

OSTEOPOROSIS

Sprue, with decreased blood calcium and symptoms of tetany frequently found in, 81

Vitamin D deficiency of long standing causes, 94

" lowered in test animals by, 92

OXIDATION

Ascorbic acid, degrees of destruction of, by, 98

Glutathiones decrease in hypervitaminosis D may be manifestation of disturbances of, 92

Hypervitaminosis D, disturbances of processes of, in, 92

" lowered in test animals by, 92

Pellagra, treatment of, with

Vitamin B deficiency affects peripheral, 25

Vitamin B deficiency affect central, due to, 57-58

NICKEL

Carotin, relation of, soil to content of, in food, 5

NIGHT BLINDNESS (See Hemeralopia)

Cod Liver Oil, treatment of, with, 12

NURSING

Egg white toxicity particularly manifest in, 70

Vitamin C, synthesis of, by, 70

Vitamin D, apparently has no greatly h storage of, 90

Vitamin H deficiency, manifestations of, in 106

NYCTALOPIA

Vitamin A deficiency, symptom of, 11

Pellagra, due to withdrawal of calcium and Vitamin D by fetus, 95

Symptoms of, 95

Treatment of, with Vitamin D, 94-95

Vitamin D deficiency, symptom of, 94

OSTEOPOROSIS

Sprue, with decreased blood calcium and symptoms of tetany frequently found in, 81

Vitamin D deficiency of long standing causes, 94

" lowered in test animals by, 92

OXIDATION

Ascorbic acid, degrees of destruction of, by, 98

Glutathiones decrease in hypervitaminosis D may be manifestation of disturbances of, 92

Hypervitaminosis D, disturbances of processes of, in, 92

" lowered in test animals by, 92

NEPHRITIC DISORDERS

Hyperkalanemia D, manifestations of, in man, 92

" Protein disintegration (toxic) in may cause nephritic symptoms in hyperkalanemia D, 91

NERVOUS SYSTEM

Ataxia, symptom of tropical Vitamin B complex avitaminosis, which affects, 62

Black tongue, disturbances of central, symptom of, 49
OXIDATION (cont'd)

Metabolic rate drop may be due to decreased, due to deficiency of Vitamin D. 93
Vitamin B2 destroyed by, 20
Vitamin C effect of, on 80
Vitamin D increases processes of, 92
Vitamin D deficiency may affect metabolic rate 93

PALLOR
Beriberi, abortive, symptom of 33
Infantile, symptom of 32
Vitamin C deficiency, manifestation of 74

PANCREAS (See Achylia)
Vitamin A and carotin of blood decreased in disturbances of 10

PAPAIN
Hydrolysis of, necessary for release of Vitamin N, 103
Vitamin C, secretion by, 71
Vitamin N, hydrolysis of, necessary for release of 103

PARALYSIS
Post-diphtheritic, treatment of, with Vitamin B2 (Brewer's yeast) 29
* treatment of, with Vitamin B1 preparation (B-Complex) 35
Vitamin E, prevention of, by, 100
Vitamin E deficiency, of extremities, manifestation of 101

PARATHROMAINE (See Parathyroid, Hormone of)

PARRIES
Beriberi, infantile, symptom of 32

PASTEURIZATION
Milk, effect on Vitamin C content of 80

PEDIATRICS
Vitamin B1, uses of, in 32-34

PELLAGRA
Absorption of Vitamin B2 complex, disturbances of, may cause 50
Vitamin B2 deficiency, may be consequence of, 96
Calcium, serum, raise by irradiated ergosterol and, in animals deprived of, 92-93
Hormone of, activity of, may be developed by, in rickets, 90-92
" parathormone 90
" Vitamin D cannot be replaced by, in rickets 90
" " " (irradiated ergosterol) may wholly re- place 32
Reciprocations between Vitamin D, thyroid and 95
Tetany on removal of, result of Vitamin D to 95
Vitamin D and, in calcium metabolism 92

PELLAGRA (cont'd)
Cancer, of, intestinal tract, due to faulty absorption of Vitamin B6 complex develops in 59
Collitis, pellagra often develops in, due to faulty absorption of Vitamin B2 complex 59
" symptom of 49
Cystine, relative of, to hair growth in 48
Cystine and glutathione, effect on growth and hair health in animals with 48
Diarrhea, fatty, often seen in 56
" from Vitamin B2 complex deficiency may cause 55
" symptom of 55
Dysentery, may develop in, due to faulty absorption of Vitamin B6 complex 59
" Egg whites, toxicity of, plays role in human 49
Erythema of, also appears in ulcerative col- itis 49
Freckles, spontaneous, susceptibility to, 59
Gastrointestinal disorders, various, treatment of, with liver extract 59-60
" in, disturbances absorption of yeast, liver and wheat germ 56
Glutathione and cystine, relative of, in animals with, 48
" treatment of, in animals with 48
Glutathione of liver and blood diminished in rats 48
" Human, differentiation from black tongue 40
Human- and rat- similarity of 49
Hydrochloric acid, complete loss of, in stomach in 50
Hyperkeratomes, follicular, related to 57
Ileus, due to faulty absorption of Vitamin B2 complex, often develops in 59
" Iron, administration of, in, may cure 49
Iron deficiency, condition, similar to, may be caused by 49
Iron, sulphur and Vitamin B6 combined may prevent 49
Lectinavin has no effect on 60
Latent or incipient, treatment of, with yeast, liver and wheat germ 60
" Lepra, some symptoms of, similze those of 62
Milk, best remedy for 62
" symptoms of 49
Nervous system disturbances due to defi- ciency of Vitamin B6 49
Pigmentation, relation of, to 57
" Rat, dermatitis, symmetrical, of 57
" " egg white dermatitis often confused 107
" glutathione of liver and 107
" " of alcoholics, due to gastrointestinal disturbance 50
" Skin changes, pellagrous, Vitamin B2 de- plex deficiency, manifestation of 56, 57
Sprue, differentiation from 60
Stomatitis, symptom of 57
Streptococci often seen in 56
Stomatitis, symptom of 57
" Stools, bloody, observed in 56
" Sulphur, fingernail, reduced In 48
" " iron In Vitamin B6 complex prevent 49
Toxicity of egg white plays part in human 49
Treatment of with, present of, with Vitamin B6 complex 59
" " with iron 49

PARALYSIS
Post-diphtheritic, treatment of, with Vitamin B2 (Brewer's yeast) 29
" treatment of, with Vitamin B1 preparation (B-Complex) 35
Vitamin E, prevention of, by, 100
Vitamin E deficiency, of extremities, manifestation of 101

PARATHROMAINE (See Parathyroid, Hormone of)
PELLAGRA (cont'd)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tropical Vitamin B complex deficiency, distinguishable from, although related to,</td>
<td>62</td>
</tr>
<tr>
<td>Types of treatment of,</td>
<td>59</td>
</tr>
<tr>
<td>Vitamin B complex, treatment of any form of, with,</td>
<td>59</td>
</tr>
<tr>
<td>Vitamin B1, large doses of, aggravates symptoms of,</td>
<td>26</td>
</tr>
<tr>
<td>Vitamin B2, often develops due to absorption of, in gastrointestinal disorders,</td>
<td>50</td>
</tr>
<tr>
<td>Vitamin B2 complex, not pure, deficiency, may result from diarrhoea caused by,</td>
<td>55</td>
</tr>
<tr>
<td>Vitamin B2 and sulphur combined may prevent,</td>
<td>40</td>
</tr>
<tr>
<td>Vitamin D, disturbances of central nervous system in,</td>
<td>49</td>
</tr>
<tr>
<td>Vitamin H deficiency, plays role in human,</td>
<td>49</td>
</tr>
<tr>
<td>" relation of, to,</td>
<td>58</td>
</tr>
<tr>
<td>" important in,</td>
<td>107</td>
</tr>
<tr>
<td>" and P-P factor generally coexist,</td>
<td>107</td>
</tr>
<tr>
<td>" Vitamin B2 complex should be given in,</td>
<td>107</td>
</tr>
</tbody>
</table>

PELLAGRA-PREVENTING FACTOR OF VITAMIN B GROUP

<table>
<thead>
<tr>
<th>Vitamin B group</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Vitamin B)</td>
<td></td>
</tr>
</tbody>
</table>

PELLAGRA-PREVENTIVE VITAMIN (Vitamin B2)

<table>
<thead>
<tr>
<th>Vitamin B2</th>
<th>Page</th>
</tr>
</thead>
</table>

PERISTALSIS

| Cessation of, Vitamin B group deficiency, | 64 |
| manifestation of, | 25 |

PERMEABILITY

| Capillary, Vitamin C affects | 75 |

PERNICIOUS ANEMIA (See Anemia)

| Vitamin A, possible relaton of, to, | 8, 9 |

PHOSPHATASE

| Cholesterol, serum, and, increased by irradiated ergosterol, | 92 |

PHOSPHATASE (See Phosphorus)

| Vitamin A, possible relaton of, to, | 8, 9 |

PHOSPHOLIPID METABOLISM

| Vitamin A, possible relaton of, to, | 8, 9 |

PHOSPHORUS

Calcium, complex necessary for bone formation by Vitamin D,	92
relation to rickets,	110
Calcium and, absorption by bone of, relation of Vitamin D to,	92
play part in metabolisn of Vitamin D,	92
Hyperphosphataemia, manifestation of, in anemias,	91
symptoms of,	95
" tetany, idiopathic,	95
Metabolism of, and Vitamin D,	90-91
" more disturbed in rickets than calcium metabolism,	90
" rickets, proportion of, calcium and, relation to,	85
Phosphatemia, Vitamin D deficiency, due to,	90
Phosphates, rickets, Vitamin D deficiency, increase proportionately to deviation from normal of calcium and,	110
Rickets, relation of metabolisn of calcium and, to,	85

PHOSPHORUS (cont'd)

Tetany, idiopathic, hyperphosphatemia, symptom of,	95
Vitamin D and,	90-92
" may develop in course of recovery from rickets due to upset balance of calcium and,	95
Vitamin D deficiency,	92
" may activate phosphate-splitting fermenta,	92
vitamin B group deficiency,	92
" may raise permeability of bone cells for calcium and phosphate,	92
" metabolism, calcium and,	80
" permits absorption by bones of calcium and,	92

PIGMENTATION

| Ascorbic acid, relation of, to, formation 76-77 |
Formation, symptoms of black tongue,	49
Metabolism, ascorbic acid high in relation to,	77
" Vitamin C in disturbances of,	71-72
Pathological, symptom of multiple vitamin deficiencies,	76
" treatment of, with ascorbic acid,	77, 79
" treatment of, with Vitamin C	77
" Pellagra, relation of, to,	57
Vitamin C and,	78

PINK DISEASE

| Treatment of, with yeast or grain germ, | 34 |
| Vitamin B1 deficiency present in, | 34 |

FITRILIASIS

| Vitamin H deficiency, manifestation of, | 100 |

PLASMA

| Albumen of, raised following ascorbic acid administration of, | 76 |

PLATELETS (See Blood)

| Blood, increased by Vitamin C treatment in purpuric hemorrhagia, | 75 |

PNEUMONIA

Incipient, treatment of, with Vitamin H,	107
Vitamin C consumption increased in,	74
Vitamin H deficiency, severe symptoms of, in rat and human,	105

POISONING, METAL (See Metal Poisoning)

POLYNEUROITIS (See also Pregnancy, polyneuritis of)

Alcohol increases need for Vitamin B1, causing,	28
" treatment of, with yeast and Vitamin B1-rich diet,	28
" Vitamin B1 deficiency, symptom of,	25
" treatment of, with yeast and Vitamin B1-rich diet,	28
Vitamin B1, curing properties of, used as test for,	21
" preventing properties of, used as test for,	21

PREGNANCY

Caries, prevalence of, in,	79
Corneal lesions in, Vitamin B group (not Vitamin A) cures,	83
Fat metabolism in, Vitamin A depleted by,	12
Hyperemesis of, treatment of, with yeast,	34
" Vitamin B1 deficiency, cause of consequence of,	34
Polyneuropathy of, treatment of, with yeast,	34
" treatment of, with yeast and Vitamin B1-rich diet,	34
" Vitamin B1 deficiency, symptom of,	34
Tropical complications of,	56
Vitamin A depleted by fat metabolism in,	13
Vitamin B1 requirement of, in,	12
Vitamin B requirement raised by,	28

Posted for noncommercial historical preservation and educational use only by seleneriverpress.com
PROTEIN
Disintegration of, (toxicosis) may be cause of nephritie and uremic symptoms in hvpervitaminosis D, 91
Metabolism, Vitamin A, relation of, to, 8
Vitamin H, role of, in, 40
Proteolytic enzymes, Vitamin K, activator of, 71
Vitamin A, relation of, to metabolism of, 8
Vitamin H necessary for assimilation of certain, 103
Vitamin H, relation of, to release of, 103

PROVITAMIN D
Sources of, 80

PSORIASIS
Skin-fat metabolism disturbances and intolerance of eggs white often accompany, 107
Treatment of, with Vitamin H and reduced fat intake, 107

PURITY
Vitamin D requirement increased by, 89-90

PURPURA HEMORRHAGICA
Blood platelets increased after Vitamin C treatment of, 75
Vitamin C, arrested, 75
Vitamin C, isolated, less effective in, than complex, 75

PYODERMATOSES (See Dermatitis)

PYORRHEA (See Teeth)
Alveolar, treatment of, with ascorbic acid, 70

PYRIASIS
Ostinate, Vitamin C deficiency condition, 74

RACHITIC ROSEARY (See Rickets)

RACHITIS (See Rickets)

RACHITIC GENETIC EFFECT
Hormonal disturbances may have, 90

RADIATION
Vitamin B1 deficiency acquired by adrenalin when irradiated, 24

RANCIDITY
Vitamin E destroyed by, of its solvent, 99

RENAL DIETS
Deficient in Vitamin B1, 27

RENAL DISORDERS (See Calculi)
Hemorrhages, treatment of, with ascorbic acid, 75
Vitamin C, treatment of, with large doses of, 75
Vitamin A deficiency increases susceptibility to calculi of, 6

RESPIRATORY TRACT
Infections of, Vitamin C deficiency, due to, 74
Vitamin B1 deficiency, 24

RESISTANCE
Lowering of epithelial, Vitamin A deficiency, due to, 6

RETICULOCYTES
Anemia factor of Vitamin B group, deficiency of, 53

RHEUMATISM
Pains of, Vitamin C deficiency, symptom of, 74
Vitamin B1, treatment of, with, 30-31

RICKETS
Calcium metabolism not disturbed like phosphorus metabolism in, 90
" and phosphorus proportion, relation to, 85
" " relation of Vitamin D to, 110
Celiac disease, faulty absorption of vitamin D in D in gastrointestinal tract in, allows, to develop, 80
Cod liver oil, treatment of, 93
Deficiency theory of, 85
Environment theory of, 85
Ergosterol, irradiated treatment with, 93
Florid, treatment of, with Vitamin D, 94
" " with Vitamin D in presence of infectious diseases, not satisfactory, 94
Gastrointestinal disorders disrupt Vitamin D absorption, 89
Infections of, treatment of, 85
Latent, develops in children from Vitamin D deficient mothers, 94
Mineral metabolism disturbed in, 90
Parathormone cannot replace Vitamin D in rickets, 93
Phosphorus metabolism not disturbed in, than calcium metabolism, 90
" and calcium complex, relation to deficiency, 110
" " requirements increased In, relation to, 85
Premature infants have tendency to develop rachitic rosey, mineral metabolism disturbances cause of, 90
" Vitamin D deficiency, 90
Renal, does not respond to Vitamin D therapy, 91
Sunlight, deficiency of, cause of, 93
Tetany, idiopathic, may develop in course of recovery from, due to upset of calcium/phosphorus balance, 95
Thyroid, histological changes in, treatment of, with Vitamin D, 93
Thyroid substance, treatment of, with, 93
Thyroidecemy, produced by, not curable by irradiation, 93
Vitamin D, treatment of bone changes in rats with, 85-88
Treatment of, with light treatments, 93-94
" " Vitamin D, 93-94
Treatments of, curative, 93
Ultraviolet light, treatment of, with, 93
Vitamin D, adequate, often develop despite, 90
" " deficiency, cause of, 94
" " disease of, 110
" " requirements increased in, 110
" " irritation to phosphorus and calcium, 110

SALT (Sodium Chloride)
Vitamin B1 eliminated from body through diuretics induced by, 33

SCARLET FEVER
Treatment of, with yeast, 57

SCIASTICA
Vitamin B1, manifestations of curative effect of, on, 29

SCLEROSIS
Iatrogenic lateral, treatment of, with Vitamin B1, 35
Multiple, treatment of, with Vitamin B1, 35
SKIN (cont'd)

Acne, hypersecretion of, due to Vitamin A deficiency

Anemia, hyperchromatic, due to Vitamin A deficiency

Anemia of beriberi

Atrophy of, due to Vitamin A deficiency

Atrophy of, due to Vitamin B complex and liver delay

Avascular necrosis

Baldness due to Vitamin H deficiency

Baldness due to Vitamin H deficiency, manifestations of

Baldness due to Vitamin H deficiency, symptoms of

Black tongue of dog, symptoms of

Bone fractures, due to Vitamin A deficiency

Bone软ening, due to Vitamin A deficiency

Bone softening, due to Vitamin A deficiency

Bones, Vitamin A deficiency, symptoms of

Boils, manifestation of

Bone deformities, due to Vitamin A deficiency

Bone fractures, due to Vitamin A deficiency

Bone softening, due to Vitamin A deficiency

Bone softening, due to Vitamin H deficiency

Bone fractures, due to Vitamin H deficiency

Bone softening, due to Vitamin H deficiency
SULPHUR (See Carbohydrate Metabolism)

STRAWBERRY TONGUE

STOOLS (See Steatorrhea)

STOMATITIS

SPRUE (cont’d)

Rat, intestinal lesions of, treatment of, with Vitamin B complex. 60-61

with Vitamin B complex, manifest.

Vitamin B complex deficiency, may result from diarrhea due to. 55

Sprue-preventing vitamin present in yeast. 54

Steatorrhoea exists in. 60

Symptoms of. 60

Treatment of, with liver and liver extract 54

Tropical, gastric juice in, nature of. 61

Vitamin C deficiency, manifestation of. 70

Yeast, sprue-preventing vitamin in. 54

STATUS SEBORREICUS

Bag white, manifestation of too much. 100-105

Human, Vitamin H deficiency, manifestation of. 105

TREATMENT OF, with Vitamin H. 106

Vitamin H deficiency, manifestation of. 105

STEATORRHEA

Anemia, pernicious, often observed in. 61

Infantile, (celiac disease), 61

Pellagra, often observed in. 56

Sprue, exists in. 60

Sprue-preventing factor deficiencies, 54

Treatment of, with intravenous or intramuscular liver extract. 61

SULPHUR (See Carbohydrate Metabolism)

SULPHUR

SULPHUR METABOLISM (See Carbohydrate Metabolism)
THYROID (cont'd)

Rickets, histological, thyroid changes in, Vitamin D alleviates. 93
Rickets may be relieved by feeding, substance. 93
Substance, administration of, may increase, and, for Vitamin B12, toxicity of, retarded by Vitamin A. 22
Thyrotoxicosis, carotin conversion to Vitamin A, necessary to. 8
" Vitamin A, antagonism of, to, 85, 118
" Vitamin B12 necessary to production of, 32
" Vitamin B12, need of, increased by, 32
" Vitamin B2 opposes. 20
Vitamin B2, relation of, to, 8, 11
Vitamin B2, need for, increased by thyroid substance. 32
" relation of, to function of, 32
Vitamin D, parathyroid and, reciprocations between, 02-03
Vitamin D, overdosage may cause demineralization in, to be avoided In, 06
Vitamin C consumption Increased in, 74
Hemorrhages, post-, treatment of, with, 9-11
Black tongue, of gastrointestinal tract, symptoms of. 49
" Diet for treatment of, due to Vitamin B1 deficiency. 85-86
" Vitamin B2 deficiency may cause. 93
" Vitamin B2, destruction of, by. 42
" Vitamin B2, destruction of, by. 48
ULCERS
Black tongue, of gastrointestinal tract, symptoms of. 49
" Diet for treatment of, due to Vitamin B1 deficiency. 85-86
Duodenal, Vitamin B1 deficiency may cause. 30
" Vitamin C deficiency allows development of. 78
Gastric, symptoms likely to appear after dietetic treatment of. 73
" Vitamin B12 deficiency may cause. 30
" Vitamin C deficiency allows development of. 78
Gastrointestinal, symptoms of black tongue. 49
" Vitamin C prevents formation of. 78
Intestinal, Vitamin B2 complex deficiency in. 56
Mucous, Vitamin H deficiency, symptoms of severe. 105
Pellagra, often develops in digestive tract, due to faulty absorption of Vitamin B2 complex. 59
Skin, Vitamin C, symptoms of severe. 105
Tooth, Vitamin C deficiency, symptom of. 78
ULTRAVIOLET LIGHT
Ergosterol activated to Vitamin D by. 86-86
Rickets, treatment of, with. 93
Vitamin B2, destruction of, by. 42
" Vitamin B2, destruction of, by. 48
URINARY SYMPTOMS
Hypervitaminosis D, in. 91
Protein distintegration (toxidrome), may produce. 91
URETHRITIS
Vitamin A deficiency, manifestation of. 6
VAGINA (See Keratinizations)
Keratinizations, Vitamin A deficiency, symptom of. 6
VIGANTOL (Vitamin D preparation) 96
VIOSTEROL
Decalcification of bone, treatment for, with, and other essentials. 73
VISION (See Eye Disorders; Lens Metabolism; Visual Purple)
Chemistry of, as related to Vitamin B1. 46-47
Progressive diminution of, symptom of vitaminic liver damage. 8
ULCERS
Albinumin compound of Vitamin A. 6
" Vitamin A necessary for regeneration of. 6
VITAMIN A
Absence of, results of. 124
Absorption of, fat essential to. 7
Anemia, Biermer's, low levels of carotin, and, in. 11
Antinfectious vitamin, 7
Antiperiodic, Vitamin A. 1
Antiperiodic, vitamin B2, symptom of severe. 78
Avitaminosis A, symptoms of. 6
Black tongue, symptom of, with, not satisfactory. 6
Blood, content of, in pathological disturbances. 6
" in. 9-11
Bromhidrosis, manifestation of deficiency of. 6
Carotin, concentration in blood by treatment of Vitamin D enhanced if, is present. 78
Carotin, concentration in blood by treatment of, with, not satisfactory. 118
Calcium, susceptibility to, due to deficiency of. 6
Carbohydrate metabolism, relation of, to. 8
" conversion of, to, 10, 11
Carotin, concentration of, in blood in patients. 10, 11
" conversion of, to. 8
" disturbed by thymicogenic liver damage. 8
VITAMIN A (cont'd)

Hypervitaminoses D prevented by large doses of vitamin C and by vitamin C and D together.

Cod liver oil, source of vitamin A and D.

Cholesterol, relation of, to cell metabolism.

Cornea, ulcerations of, treated locally with vitamin A preparations.

Deficiency of vitamin A, symptom of deficiency of vitamin D, resistance lowered by deficiency of vitamin D, protecting vitamin A, necessary for normal vision to 10, 11.

Sinusitis, manifestation of deficiency of vitamin A, in special diets very frequent.

Urethritls, manifestation of deficiency of vitamin A, in special diets very frequent.

Vitamin D prevents generation of respiratory infections by vitamin B.

Hypovitaminosis A is overcome by over-supply of vitamin A.

Hypervitaminosis D prevented by large doses of vitamin A.

VITAMIN B COMPLEX (See Vitamin B, Folic Acid, etc.)

Vitamin B, anemia-preventing factor of, 117.

Vitamin B, deficiency aggravated by over-supply of vitamin D, 26.

Vitamin B, protection of, 107.

Vitamin C, anemia-preventing factor of, 9, 117.

Vitamin C, relation of, to vitamin D, 72.

Vitamin D, anemia-preventing factor of, 117.

Vitamin D, protection of, 107.

Deficiency of vitamin A, manifestation of, 6, 118.

Hypervitaminosis A is overcome by vitamin B, 26.

Hypovitaminosis A is overcome by over-supply of vitamin A, 117.

Hypervitaminosis D is prevented by large doses of vitamin A, 117.

Hypovitaminosis A is overcome by over-supply of vitamin A, 117.

Hypervitaminosis D is prevented by large doses of vitamin A, 117.

Hypovitaminosis A is overcome by over-supply of vitamin A, 117.

Hypervitaminosis D is prevented by large doses of vitamin A, 117.

Hypovitaminosis A is overcome by over-supply of vitamin A, 117.

Hypervitaminosis D is prevented by large doses of vitamin A, 117.

Hypovitaminosis A is overcome by over-supply of vitamin A, 117.

Hypervitaminosis D is prevented by large doses of vitamin A, 117.
VITAMIN B COMPLEX (cont'd)

VITAMIN Bi
Requirement of, raised by alcoholism... 28

Vitamin A, antagonism of, and... 117

Pellagra, treatment of, with... 20

Complexity of... 10-20, 30

Anemia factor of, (See Anemia Factor of Vi-
Anemia, goat-milk, due to deficiency of an-
Blood, formation of, by anemia factor of
Atony, gastric, due to deficiency of... 25, 30, 64

Fullness, feeling of, due to deficiency of. 64
Dermatitis-preventing factor of (Vitamin
Gastric juice, relation of anemia factor
Gastrointestinal disturbances, symptoms of
Nomenclature explained... 10
Growth factor of (Lactoflavlnl 40-41
Retclulocytes reduced by deficiency of an-
Sensibility, reduced, due to deficiency of. 64

Absence of, results of... 126

Absorption and utilization of food, indis-
" of, from bacteria in stomach, by
" physical... 23
" fat, indispensable for... 25, 31
Acyluria, due to deficiency of... 24
Acrodynia, symptoms of deficiency... 34, 62
Adenin acquires, effect, when radiated... 24
Adrenal cortex, state of, due to defect of food,... 22
Agranulocytosis, due to deficiency of... 30
Alcohol increases need for... 28
VITAMIN B₃ (cont'd)

Deficiency of heart disorders, result of. 21
" function, affects. 25
" muscle, water imbibitions of. 25
" hyperemesis of pregnancy may be cause or consequence of. 34
" hyperthyroidism, due to. 32
" hypoglycemia, symptom of. 25, 28
" ketogenic diets, in. 27
" lack of insulin, due to. 30
" muscular weakness, due to. 27
" myelosse, funicular, manifestation of chronic. 29
" nervous disorders of, due to. 62
" system, peripheral, affects on. 25
" treatment of, with. 31-32
" peristalsis, cessation of, due to. 28
" present in Pink's disease. 34
" polyneuritis, alcoholic, symptom of. 22
" of pregnancy, symptom of. 24
" results of, due to. 125-126
" symptoms of, 25, 27-28
" temperatures, subnormal, due to. 25
" tungsten, loss of muscle, due to. 30
" ulcers, duodenal, may result from. 30
" glycemic of, from. 30

Dermatitis, Vitamin B₃ and, for prevention and cure of. 47
Destruction of, by oxidation. 20
Determination of, methods of. 21-22
Diabetes, possibility of replacing insulin with. 31
Diabetic diet deficient in. 27
" polyneuritis, treatment of, with. 28
" methylglyoxal, elimination of, by animals. 34
" Gastrointestinal disturbances, treatment of. 27
" for. 27
" interferes with utilization. 23
" of offering due to. deficiency in mother. 25
" tone, necessary for maintaining. 24
" glycogen metabolism involved in. 34
" growth, cessation of, due to deficiency of. 34
" Vitamin B₃ and, for prevention and cure of. 47
" demands for, greater than normal needs. 27

Growth prevention and cure of. 47
" prevention by. 21-22
" test for. 21-22

Gynecology, in. 34
Heart disorders, due to deficiency of. 21, 34
" treatment of, with. 31-32
" function, necessary for normal metabolic processes. 24
" muscle, relation of, to sugar metabolism. 24
" water imbibitions of, due to deficiency of. 25

Hyperemesis of pregnancy, relation to deficiency of. 24

Hyperthyroidism, due to deficiency of. 32
" increases demand for. 27
" treatment of, with. 31-32

Hypervitaminosis A reduced by administration of. 28

Hypoglycemia, symptom of deficiency of. 25-28
Hypertension, need for, in. 30-32
" internal medicine, in. 30-32
" ketogenic diets, deficiency in. 27
" lactation demands for, greater than normal needs. 27
" methylglyoxal, elimination of, due to deficiency in. 34

Mortality, infant, due to deficiency of. 33-34
Muscular action requires greater amounts of. 30

Myelosse, funicular, treatment of, with. 35
" manifestation of chronic deficiency of carbohydrates in. 20

Nervous disorders, due to deficiency of. 62
" system, central, effect of, on. 24
" lesions of, due to deficiency of. 28

Neurology, use of, in. 38, 39
" Nomenclature of Vitamin B group explained. 19
" Oxidation destroys. 20
" Pains in arms and legs, need for, in. 27
" Paralytic, treatment of, with. 30
" Perianal, symptom of deficiency of. 31
" Polyneuritis, alcoholic, symptom of deficiency of. 30
" Polype, alcoholic, symptom of deficiency of. 22
" curing properties of, used as. 21
" diabetic, manifestation of deficiency of. 28
" prevents pernicious anemia. 21
" of pregnancy, due to increased by febrile conditions. 23
" increased by gastro-intestinal disturbances. 23

Pink's disease, deficiency of, present in. 34
Post-diphtheritic conditions, treatment of, with preparations of. 35

Pregnancy increases need for. 27, 28
" preparations of, in. 30-31

Relation of, to other vitamins. 26

Renal disease, symptom of deficiency in. 30
Requirement of man for. 22, 23, 111
" affected by external temperatures. 23
" growth increases. 27
" increased by fever. 28
" increased by gastro-intestinal disturbances. 23

" increased by yeast. 28

yeast., 28

Post-diphtheritic conditions, treatment of, with preparations of. 35
Pregnancy increases need for. 27, 28, 34
Preparations of. 27, 28
Pure form, not usually found in. 30-31
Relation of, to other vitamins. 26
Renal disease, symptom of deficiency in. 30
Requirement of man for. 22, 23, 111
" affected by external temperatures. 23
" growth increases. 27
" increased by fever. 28
" increased by gastro-intestinal disturbances. 23

" increased by yeast. 28
VITAMIN B₁ (cont'd)

Requirement of man for increased by thyroid administration... 22

1 less of high

diets than in high

carbohydrate diets.

23

more in high carbo-

hydrate diets than in

fat diets...

22

raised by increased

metabolic rate...

22

Respiration, effect of on...

Rheumatism, treatment of, with...

Sclerotics, curative manifestations of, in...

Sulphur-containing vitamin

Sugar conversion. Indispensable for...

Sciatica, curative manifestations of...

Complex (See Vitamin B₂ Complex)

Colitis, ulcerative, symptom of...

Complexity of

Acrocyanaemia due to deficiency of...

Acrodynia, due to deficiency of...

Acrocyanaemia, symptom of deficiency of...

Adrenal changes in pellagra, relation to deficiency of...

Anemia factor related to, but not identical to, pellagra... 51-52

aust-white, symptom of deficiency of...

of sprue, symptom of lack of...

Blood regenerating factor of...

Celiac disease, symptom of deficiency of...

* treatment in B₂-rich foods...

Cell oxidation indispensable for activation of...

Chemistry of...

Colitis, ulcerative, symptom of deficiency of...

Colitides nature of...

Complex (See Vitamin B₂ Complex)

Deficiency of b, acute may be consequence of...

Anemia, symptom of...

anemia of sprue, symptom of...

celiac disease, symptom of...

VITAMIN B₂ (cont'd)

colitis, ulcerative, symptom of...

growth, cessation of, due to deficiency of...

hair, loss of, manifestation of...

hemorrhages, multiple, of intestine, due to...

hydrochloric acid, loss of, due to...

lentent, symptom of...

lepra, due to...

nervous system disturbances due to...

symptoms of...

Determination of, methods of...

Elimination of, in body...

Gastrointestinal disorders result from deficiency of...

Growth, cessation of, manifestation of deficiency of...

Growth-stimulating effect of...

factor of Vitamin B group...

Hair, loss of, manifestation of...

Hemorrhages, multiple, of intestine, due to deficiency of...

Hydrochloric acid, complete loss of, due to deficiency of...

Illness, pellagra, development of, faulty absorption of...

Lactation increases need for...

Lepra, due to deficiency of...

Nervous system disturbances, due to deficiency of...

Pellagra, but treatment of...

given in...

preventive vitamin...

Requirement of man for...

retinoids, high in...

Skin, scaly, manifestation of deficiency of...

Sources of...

Sprue, symptoms of deficiency of...

Storage, as colloid...

Symptoms of, lack of, lentent...

Symptoms of deficiency of...

Ultraviolet light destroys...

Vision, possible relation to...

Vitamin B₂ antagonistic to...

VITAMIN B₂ COMPLEX

Acrocyanaemia due to deficiency of...

Acrodynia, due to deficiency of...

Adrenal changes in pellagra, due to deficiency of...

Adynemia, treatment of, with...

Agranulocytosis, due to deficiency of...

Anemia, indications of importance of, in...

megaloblastic, due to deficiency of...

pernicious, relation of, to...

Biliary disorders may predispose to pellagra due to faulty absorption of...

Black tongue, due to deficiency of...

symptoms of...

symptoms of dog pellagra although due to deficiency of...

Vitamin B₂, carotin, anemia factor and related to...

Bone, decalcification of, calcium, villerol and, necessary in treatment of...

Calcium metabolism normalized by...

Cancer of intestinal tract, pellagra due to faulty absorption of...

Colitis, chronic ulcerative, due to deficiency of...

Colitis, manifestable, symptom of...

Colitis, symptom of deficiency of...

Colitis, ulcerative, relation of, to...

Colon, indigestion, leads to normal...

Deficiency of, achlorhydria, result of...
VITAMIN B2 COMPLEX (cont'd)

Deficiency of...

- acrochordons, due to...
- aderal changes in lepra may be consequence of...
- ame, megalocytic, non-...curable, due to...
- black tongue, due to...
- colitis, chronic ulcerative, due to...
- diarrhea, due to, may result in
in pellagra and anemia, megalocyti-
-tic...

- resulting from, hindrance of further absorption of...
- gastrointestinal disorders may be cause or consequence of...

- growth, cessation of, symptoms of...
- hair defects, treatment of, due to...
- hair defects, treatment of, due to...

- *different from* skin and intestinal symptoms of, may be increased by...
- *mucous changes, due to...pellagrous skin changes, symptoms of...
- *sprue, due to combined deficiency of.* Vitamin C and...
- *rat, may be result of diarrhea due to...*

- *stomatitis, symptom of...*
- *symptoms of...* 40, 55-56

- *tongue, strawberry, symptoms of...*
- *ulcers, intestinal, relation to...*

- *Diarrhea, due to deficiency of.* Vitamin B2 group in pellagra and anemia...
- *resulting from deficiency of* hindrance of further absorption of...
- *symptom of deficiency of...* 40, 56

- *Eye disorders, treatment of, with...*

- *Gastrointestinal disorders, may be cause or consequence of deficiency of...* 55
- *disturbances in pellagra disturb absorption of...*

- *History of research on...*

- *Hydrochloric acid in stomach decreased or depleted by deficiency of...*
- *Hyperirritability, treatment of intestinal...
- *Interrelationship of factors of...*
- *Karatii-preventing factor of...*
- *Lens, possible relation of...due to...

- *Lepra, due to deficiency of...* 56
- *intestinal and skin symptoms may be increased by deficiency of...* 62
VITAMIN B6 (cont'd)

Growth, cessation of, Vitamin B6 and, in prevention of, in prevention of.... 47
Indispensable to man... 47
Iron metabolism, relation of, to... 40
" sulphur and, may be necessary to prevent pellagra.... 40
Pellagra-preventing factor of Vitamin B group... 48
Requirement of man for... 48
Sources of.... 48
Sulphur metabolites... 48-49
Ultraviolet light, destruction of, by... 48
Vitamin B6 and, interrelationship of, in prevention and cure of dermatitis and growth cessation... 47
Vitamin H, confusion of, with... 105

VITAMIN B6

Deficiency of, gastrointestinal symptoms, due to... 64
Mucosa, intestinal, necessary for normal function of... 64
Musculature, intestinal, necessary for normal function of... 64

VITAMIN C (See Ascorbic Acid; Blood, Clotting, Growth, cessation of, Vitamin B6 and, in prevention and cure of dermatitis and growth cessation... 47
Vitamin B6 and, interrelationship of, in prevention and cure of dermatitis and growth cessation... 47
Vitamin H, confusion of, with... 105

VITAMIN C (cont'd)

" hamaturia, symptom of... 100
" hemorrhages, symptom of... 74
" infection, symptom of... 75
" infectious diseases, susceptibility to, immunity and resistance to... 81
" interdental tissues, swelling of, due to... 80
" miscarriages, tendency to, may be caused by... 70
" mucobloody exudation, symptom of... 74
" osseous changes, due to... 70
" ossefication caused by... 70
" pyurias, obstinacy, condition of... 74
" rat, manifested in tooth changes before scurvy developing,... 114
" resistance to infectious diseases lowered by... 81
" resorption, mental, manifestation of... 70
" respiratory infections, resistance to, lowered by... 74
" results of... 127-128
" rhematic pains, symptom of... 74
" scurvy, condition of deficiency of... 69
" special diets, in... 114
" sprus, due to combined deficiency of Vitamin B2 complex and... 60
" tropical, manifestation of... 70
" stability, female, may be caused by... 100
" symptoms of... 74
" tooth components, degeneration of, symptom of... 78
" degeneration of... 78-79
" ulcers, duodenal, due to... 78
" " interdental, due to... 78
" weight loss, due to inhibited ascorbic acid... 69

Dental health and... 78-79

Destruction of, by air... 80
" in intestines by paratyphoid B and coli group... 74
Diabetes, demand for, increased in... 74
Dyspnea, symptom of deficiency of... 74
Epidermis, high in... 77
Excretion of... 71
Hemorrhages, capillary, treatment of, with... 76
Hemophilia, treatment of, with pure... 75
Hypervitaminosis A overcome by... 80
Immunity to infectious diseases lowered by... 81
Indispensable for man and ape... 74
" resistance and immunity to... 81
Kathepin, activated by... 71
" longitudinal, promoted by... 78
" resorption, fetal, manifestation of... 74
" resistance to infection... 74
" special diets, in... 78
" resorption, fetal, manifestation of... 74
" resistance to infection... 74
" special diets, in... 78

" growth in children inhibited by... 80
" growth in children inhibited by... 74
VITAMIN C (cont'd)

Lactation, in...

Milk, content of diet determines production of satisfactory...

Misscarriages, tendency to, due to deficiency...

Not to in girls and rats, effect of...

Oxidative changes due to deficiency of...

Oxidation, effect of, on...

Papain, activated by...

Pasteurisation of milk, effect on content of...

Pigment metabolism and...

Pigmentations, pathological, treatment of...

Pregnancy...

Proteinic ferment, activated by...

Purpura hemorrhagica. Isolated, less effective...

Pyrolas, obstinate, condition of deficiency...

Rachitis allowed...

Rheumatic pains, symptom of deficiency of...

Red blood picture, relation of, to 75, 70

Reduction, strong power of, of...

Respiration and fermentation of plants, relation of...

Rickets, disease of...

Source of...

Sprue, due to combined deficiency of Vitamin B complex and...

Sterility, female, caused by deficiency of...

Synthesis of, by nurslings...

Tooth formation, improved, both Vitamin D and, necessary for...

Tissue, regeneration of, by administration of...

Typhoid, increases consumption of...

Ulcers, duodenal, due to deficiency of...

Vitamin A, antagonism between, and...

Vitamin C, relation of, to...

Vitamin D, interrelationship of, and, in tooth health...

Weight, loss of, due to deficiency of, inhibited by ascorbic acid...

VITAMIN C2 (Vitamin Jl

Blood-clotting effect of pure...

VITAMIN D (cont'd)

Biliary obstruction due to faulty gastrointestinal absorption, treatment of, with...

Blood-clotting effect of pure...

Bone and...

" bending of, due to deficiency of...

" changes in intestinal absorption, treatment of...

Calciferol (Vitamin D product)

Calcification, role of, in...

Calcium, blood, raised by, due to blood-clotting effect of pure...

" deposition in bones by, enhanced ...

" metabolism, and...

" serum, raised in pernicious anemia in irradiated dogs by irradiated ergosterol and parathormone...

" utilization of, by bone formation, for bone formation...

" built up by...

" play part in metabolism of...

Carbohydrate/lactic acid quotient rises on administration of...

Cataract, blood, raised by...

Celiac disease, due to faulty gastrointestinal absorption, treatment of...

Chemistry of...

Children, treatment of, with...

Cod liver oil, source of Vitamin A and...

Complecty of...

Deficiency of...

" calcification, faulty, of...

" differentiation from avitaminosis A...

" growth, longitudinal, bone...

" metabolic rate reduction may be due to decrease of oxida-

" osseous changes due to deficiency of...

" osteoporosis, due to...

Deficiency of, in, because of 'faulty absorption of...

" results of...

" tetany, idiopathic, may be due to...

" scurvy, due to...

" sepsis, treatment of, with...

" system, treatment of, with...

Determination of...

Ecstasy, treatment of, with...
VITAMIN D (cont'd)

Elimination of...

Ergosterol, activation to, by ultraviolet light...

Food, in...

Formula for...

Functions of...

Elimination of...

Ergosterol, activation to, by ultraviolet light...

Rickets, florid, accompanied by...

Infectious rachitlc roaary, due to deficiency of...

Renal rachitis does not respond to therapy...

Relation of other vitamins to avoiding hy-

Oxldative processes increased by...

Overdoaage of, demlnerallzatlon in, tuber-

Puberty increases need for...

Provitamin, sources of...

Preparations of, commercial...

Preparations of, commercial...

Rachitic roasy, due to deficiency of...

Relation of other vitamins to avoiding hy-

Rickets, adult, treatment of...

Rickets, infantile, treatment of...

Rickets, florid, accompanied by infectious...

Preparation of infant for...

Requirement of infant for...

Rickets, florid, accompanied by infectious...

Scurvy, due to deficiency of...

Sources of...

Storage of, in activator,...

Teeth, formation of, relation of, to, 79...

Tetany, effect of, parathyroprival, influenced by...

Thymus, relation of, to...

Thyroid, changes, histological, alleviated in rickets by...

Tooth formation, adequate, necessary for...

Toxicity of, in large doses...

Vitamin D and, necessary for improved tooth formation...

VITAMIN D (cont'd)

Rickets often develop despite intake of...

Scurvy, due to deficiency of...

Sources of...

Storage of, in activator,...

Teeth, formation of, relation of, to...

Tetany, effect of, parathyroprival, influenced by...

Thymus, relation of, to...

Thyroid, changes, histological, alleviated in rickets by...

Tooth formation, adequate, necessary for...

Toxicity of, in large doses...

Vitamin D and, necessary for improved tooth formation...

VITAMIN B

Abortion, habitual, treatment of, with...

Tendency to, in cows, sheep and pigs, treatment of, with...

Absence of, manifestations of...

Asymin often accompanies, a t i t natural source...

Animals to which, is indispensable...

Antivitamin necsesary for Improved tooth...

Avitaminoses, other than those due to defi-

Bones, significance of, to...

Births, tendency to premature, treatment...

Bess, significance of, to...

Birds, tendency to premature, treatment...

Chemistry of...

Complexity of...

Cureve properties of, manifested in dis-

Deficiency of, avitaminoses, manifestation of...

Feal resorption, due to...

manifestations of...

of, in male differ from those in female...

repair...

muscular dystrophies, due to...

palsy of extremities...

semen tubule atrophy, manifestation of, in male...

sterility, female, due to...

tendency to malignancies of stomach wall noted in...

* "..." signifies no data available...

* "..." signifies no data available...
VITAMIN H (cont'd)

"keratomalacia, manifestation of severe deficiency of...
manifestations of...
manifestations of...
pellagra due to, amino acids and...
genesis of palsy in
"pityriasis, manifestation of...
"pneumonia, manifestation of...
"prurigo, manifestation of...
"pyoderma, manifestation of...
"sebaceous secretions in
"seborrheas, manifestation of...
"skin changes (pellagra-like)
manifestation of...
"fatty degenerations of...
"inflammations of...
to,
"lesions, manifestation of...
"scaly manifestation of...
"status seborrhoeus, due to...
"symptoms of deficiency of...
treatment of, in adult
ulcers, mucous and skin, due
treatment of...
Dermatitis, egg-white, due to deficiency of...
treatment of
deficiency of
pyoderma, manifestation of
deficiency of...
seborrhoeus, treatment of,
Determination of
Dieresis inhibit resorption of...
Egg white, assimilation of, relation of...
"in excess manifests itself as
symptom of deficiency of...
Bryohematosis, deficiency, treatment of, with...
Factor X, related to deficiency of...
Fat assimilation, necessary for normal...
"intake, reduction of, helps function of..
"metabolism disturbances, manifestation of deficiency of...
"skin metabolites, necessary for
"metabolism disturbances, manifestation of deficiency of...
Fetus contains no...
Pururcin, role of, in localized infections
Growth-promoting properties of...
Hair, loss of, manifestation of deficiency of...
"may respond to treatment with...
Hide changes in animals deficient in...
Indispensable for some species...
Infections of skin, manifestations of deficiency of...
resulting from seborrhoeas, treatment of,
Intertrigo, manifestation of deficiency of...
Keratomalacia, manifestation of severe deficiency of...
treatment of, with...
Milk, mother's has less than cow's,
Pepin hydrolysis necessary to release
Pellagra-preventive factor generally co-
exists with...
related to deficiency of amino acids and...
relief of, to...
treatment of, with Vitamin B complex...
Pityriasis, manifestation of deficiency of...
Pneumonia, incidence, due to treatment of...
Pneumonies, manifestation of deficiency of...
Preparations of, commercial...
Protein metabolism, role of...
"necessary for assimilation of cer-
tain...
VITAMIN H (cont'd)

Protein probably attached to............. 103
Proteolytic splitting in intestine neces-

sary for release of... 103
Deficiency of vitamin G... 103
Nervous system, vitamin G... 103
Deficiency of vitamin G... 103

WATER METABOLISM

VITAMIN REQUIREMENTS OF MAN 111-115
Vitamin A 7, 13, HI
Vitamin J (Vitamin G) 82
Vitamin H 104
Vitamin E 100
Vitamin G (See Vitamin B2) 44-45

VITAMINS

Cooking, effect of on Vitamin B12... 21
Cooking, effect of on Vitamin B12... 104
Fat-soluble, antagonism between, and water-
soluble... 117
Hormones and... 118-119
Interaction of... 9, 20, 72, 117
Water-soluble, antagonism between, and fat-
soluble... 117
Scurvy, deficiency of, caused by...... 70

WATER SOLUBLE VITAMINS (See Vitamins, Water-
Soluble)

WEIGHT

Ascorbic acid prevents loss of, in Vitamin... C-free diets... 60
Increase of, retarded, manifestation of defi-
cency of Vitamin C... 74
Loss of, need of Vitamin B1 in... 29
" symptom of abortive beriberi... 35
" for releasing dietary D... 92
" infantile beriberi... 32
" treatment of, with ascorbic acid... 60
Reduction of, occurs more severe in gravid
than in normal animals... 79
Tuberculosis, increase of, in... 95
" Vitamin... 95
Vitamin H requirement proportionate to body... 104

WHEAT

Anemia, goat-milk, treatment of... 62

WHITE GERMS

Beriberi, abortive, treatment of, with... 33
" Pellagra, latent or incipient, treatment of, with... 60

WOUNDS

Cod liver oil salve, treatment of, with... 33
" Vitamin A, local application of, to... 12

XANTHOPHILIA

Carotin, dyestuffs, relation of, to... 3

XANTHOPHILIA

Antixerophthalmic vitamin (Vitamin A)... 1
Fat-soluble substances in diet, due to de-
ciciency of... 1
" Vitamin A, due to deficiency of... 0
" peroral, treatment of, with gastrointesti-
nal disturbances are absent... 13
" subcutaneous or intramus-
cular treatment of, with, if gastrointesti-
nal disturbances are present... 14

YEAST

Acne, treatment of, with... 107
Acrodermatitis, treatment of, with... 62
Agranulocytosis, treatment of, with... 63
Anemia, children, with response to yeast... 33
" Anemia, treatment of, with... 62
" hyperchromatic, react to treatment... 56
" megalocytic, curable by... 51
Anti-diabetic action of... 31
Beriberi, abortive treatment of... 31
Celiac disease, treatment of, with extracts... 61
" anti-diabetic action of... 31
" celiac disease, treatment of, with... 61
" diabetes, use of, in... 31
" furunculosis, treatment of... 35
" goiter, exophthalmic treatment of... 32
" Flavin, synthesis of, by... 43
" Furunculosis, treatment of, with... 35
" Heart, enlargement of, due to, treatment of... 107
" Hyperemesis of pregnancy, treatment of... 34
" Lepra, treatment of, with... 62
" Nervous system degenerations, treatment of... 34
" Pellagra, latent or incipient, treatment of... 33
" Polynueraitis, alcoholic, treatment of, with... 60
" Polyneuritis, of pregnancy, treatment of... 28
" " with Vitamin B2, rich diet... 34
" Scarlet fever, treatment of, with... 34
" Scouring, repeated, treatment of, with... 33
" Sprue, failure of treatment of, with... 61
" Tropical Vitamin B2 complex avitaminosis... 54
" Vitamin B1 contained in... 62
" Vitamin B1 group, brewer's, contain... 64
" Vitamin B2 group, brewer's, contain... 64

YELLOW FEVER

Albumen-bound Vitamin B2... 45-46

ZINC

Carotin, relation of, to content of, in... 5
WATER METABOLISM

Ascorbic acid prevents loss of, in Vitamin C-free diets... 60
Increase of, retarded, manifestation of deficiency of Vitamin C... 74
Loss of, need of Vitamin B1 in... 28
" symptoms of abortive beriberi... 33
" hypervitaminosis D... 91-92
" infantile beriberi... 32
" treatment of, with ascorbic acid... 60
Reduction of, occurs more severely in gravid than in normal animal... 70
Tuberculosis, increase of, in Vitamin B1 diets... 90
Vitamin H requirement proportionate to body... 104

WHEAT GERM

Beriberi, abortive, treatment of, with... 33
Pellagra, latent or incipient, treatment of, with... 60

WOUNDS

Cod liver oil salve, treatment of, with... 33
Vitamin A, local application of, to... 12

XANTHOPHYLLS

Carotin dyestuffs, relation of, to... 3

XANTHOSIS

Carotin, result of excessive administration of... 10

YEAST

Acne, treatment of, with... 107
Acrodynia, treatment of, with... 34, 62
Anemia, children with, respond to yeast therapy... 33
" goats milk, treatment of... 33
" hyperchromatic, react to treatment... 33
" megaloblastic, curable by... 33
Antidiabetic action of... 31
Beriberi, abortive, treatment of, with... 33
Celiac disease of, by... 33
Extracts of, antidiabetic action of... 31
" celiac disease, treatment of... 33
" diabetes, use of, in... 31
" furunculosis, treatment of... 35
" goiter, eschymalatic, treatment of... 33
" Pflavin, synthesis of, by... 33
Furunculosis, treatment of, with... 33
Heart, enlargement of, due to, treatment of, with... 33
Hyperemesis of pregnancy, treatment of... 33
Leptra, treatment of, with... 33
Pellagra, latent or incipient, treatment of, with brewer’s... 33
Pink disease, treatment of, with... 34
Polynieritis, alcoholic, treatment of, with... 28
Polynieritis, of pregnancy, treatment of... 28
" treatment of... 34
" with Vitamin B1-rich diet and... 34
Scarlet fever, treatment of, with... 33
Spasms, repeated, treatment of, with... 33
Sprue, failure of treatment of, with... 61
" tropical, treatment of, with... 61
" sprue-preventing, vitamin in... 54
Tropical Vitamin B complex, antithrombotic... 43
Vitamin H contained in... 107
Vitamins of, Brewer’s... 34

YELLOW FERMENT

Albumin-bound Vitamin B1... 45-46

ZINC

Carotin, relation of, to content of, in... 5